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CHAPTER 1

INTRODUCTION

WATER POLLUTION IN ESTUARIES

Since some 60% of the world's population lives
in deita and coastal regions (l1)*, man has for cen~
turies been using the most economical and convenient
means of sewage disposal - discharging it directly into
rivers and estuaries. With the ever increasing popu-
lation and industrial growth, waste loids are increas-
ing at a startling rate and are threatening to turn one
of our greatest natural resources into an alarming nat-
ional problem., This fact is well verified when looking
at the progréss of water classified as polluted over a
period of time. A typical example is Narragansett Bay,

as shown in PFigs, 1l « 1 through 1 - 6 (2).

* Numbers in parenthesis refer to items in the Bibliography.



ot
o

£ FOLLUTED

PIG. l-1 NARRAGANSETT BAY POLLUTION - 1880 (2)



Y
= POLLUTED
Ll agzas -
Y
| 2 )
! -
A
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FIG, l-4 NARRAGANSETT BAY POLLUTION - 1947 (2)
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FIG. 1-5 NARRAGANSETT BAY POLLUTION -~ 13961 (2)
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Tﬁe ecosystem of an estuary is a delicate

balance of chemical, physical, and ecological fac-

.Jtors. A natural system such as this may tolerate

a limited amount of human interference by discharg-

ing treated and untreated wastes into its waters.

This ability is commonly referred to as the assimu-

Ilative capacity or self-purification capacity of an

estuary. Within this extent, the ecological balance

of fhe system will tend to be restored to an equil-

ibrium position with no detrimental effects to the

ecology of the estuary. However, if interfered with

beyond this limi“ 2 new sysiem balance will be achieved

which leads to loss of wildlife and fish, over-

growth of some undesirable aquatic and benthic.life and other
consequences which have loné-range effects and have

not even been fully determined. The subsequent loss

of valuable estuary resources such as fishery, wildlife,

and minerals,'summarized by Di Luzio (3), shows that
continued estuary pollution and its consequent changes of tﬁe'

ecosystem are a threat to the gquality and even continuance

of man's existence in



- these areas both for the immediate present and

future generations of mankind.
Estuary pollution can usually be divided into

three general categories - bottom, surface, and liquid
wagtes., Bottom wastes are usually in the form of de-
posits of incrganic eor 6rganic matter which are in-
soluble., These deposits tend to build up in chan-
nels and similar hydrographic features. Their removal
is usually accomplished by dredging which often is a
very expensive and time-consuming process, Many of
these bottom deposits also can exert a considerable
oxygen demand on the estuarine water and l=ad to local
eutrophication., On the other hand, suriace wastes are
usually buoyant materials such as o0il which tend to block
important surface transport phenomena - such as re-
areation and heat and light transmission. 'Howevér, the
moét important pollution source is that cauée& by liguid

wastes, These are critical since they refer to the

majority of the pollution loads discharged into an

estuary - i.e, the carbonaceous, nitrogenous, phos-

- phorous, and other scluble organic and



-

inorganié matters derived from sewage and Sther
waste discharges, The organic matter is of im-
portance since it serves as a food source for bac-
teria and other organisms whose existence may be‘
detrimentalﬁto various water uses, Therefore, this
study will deal primarily with the liquid wastes,

The others, surface and bottom, only being indirectly
_considered.

To predict accurately the quality of water re-

quires answers to the following questions (1).

{1) How is a given pcllutant from a source
transported and distributed through an
estuary as a function of time?

(2) How rapidly does‘the decay or gemeration
by natural processes add or subtract from
the water quality parameter being used as

an indicator?

The first question is primarily one involwving the fluid

mechanics of mass transport in the estuary. The processes

- -10-



involved are advective transport of a constituent

.due to the mean tidal velocity and dispersive trans-
port produced mainly by turbulent mixing., These
values are related solely to the physical hydro-
dynamical or flow characteristics of the estuary and
are both time and space dependent, The second ques-
tion is chiefly concerned with the chemical and micro-
biological processes of species generation and décay.
These variables tend to be temperature and time de-
pendent and in cases concentration dependent,

Water quality models describing beth the hydro-
dynamic transport and the dacay oc gereration cf a
specific parameter usually assume the form of a mass
transport equation with a specific source-sink or
reaction matrix term, WNormally the types of models
developed can be divided into two general clasées, con-
servative and non-conservative. The non-conservative
models can also be further subdivided into one-stage
through multi-stage reaction schemes. To aid in visualiz-
ing the mathematical structure of these models an example

of each is presented.

=11~



Example 1 - conservative Case (Salinity or chlorinity)

Js 3s ds as s
a a

a a 3 a
— ——ns — e — o em— —
® YR Y Yy ¥ 3 > %x =
a3s 3s
3 3 a _
ay (eY ay = az ( ez az ) 0 (1.1)
Sa - Conservative constituent such as salinity or
chlorides
e,v,w, - X,Y,2 - directed velocity components,
respectively

e ,e ,ez - X,Y,2 - directed diffusion cocefficients,

respectively
Example 2 - Non-Conservative, Sincle-Stage Reaction.Case
(Coliform)
' ac ac ac
3t 3 dy dz ™ Tx o
aC ac (1.2)

- (e, <2 . (e. —=>)=-K_.C_ +Co

dy 'y oy dz z dz cd "o s

=12~



C° - concentration of coliform bacteria (MPN)

KCd - decay constant for coliform bacteria (1/sec)

coa ~ source of coliform bacteria (MPN/ sec)

u,v,w - X,v,z - directed velocity components, respectively

ex,ey,ez - %,Y,2z - directed diffusion coefficients, re-

spectively

- Example 3 - Non-Conservative. Two-Stage Reaction Case

(D.O. - B,0.D.)

o, d, % , x4 _d .
et RV TV T Bk )
{1.3)
) 3L 3 ALy ook osom
"Ly ) 5 ) TR
(B.0.D.) equation
%% + u %& + v %% +'w‘%§ - %; ( e, %& ) -
3 %, 2 X . )
oy (ey ay)-az (ez az)—-KDL-i-KA (CSATC)+S
{D.0. equatiom)
‘L - biochemical oxygen demand (B.0.D.) concentration

(mg/1) | -



u,v,w=-x,y,2 - directed velocity components, respectively

ex,ey,ez - X,¥,2 - directed diffusi?n coefficients,
respectively,
KD - B,0.D. decay coefficients (1/sec)
J - point load of B.0.D. {mg/l of B.0.D./sec.)
KA - reareation coefficient for dissolved oxygen
(1/sec).

Copam " saturation level for dissolved oxygen (mg/1)
c ‘= concentration of dissolved oxygen (D.Q.) (mg/1)

S -~ source or sink for D.0. (mg/l sec)

Higher order reacticon schemes such as that for
the nitrogen cycle have not been shown but follow a
similar pattern. A careful survey of the reaction
schemes presented shows a common mass tfansport eq-
wation with varying reaction terms. Hence, the develop-
ment in this work will be based on the basic mass trans-
port equation with indications as to how multi-stage
reaction mechanisms may be added.

The ability to predict the actions of these syétemé
on the estuary is then the chief concern of a well con-
structed water quality model. This model thus provides

a method to study the technical alternatives to various

=14~



political, legal and administrative decisions, and

‘should aid in managerial approaches to control pol-

* lution in an estuary.

PRESENT STUDY

Work in estuary water quality has progressed
rather rapidly in recent years with the development
of mathematical models for the one-dimensional (1,4,3)
and vertically-averaged, two dimensional (6) mass-—
transport equations. An excellent summary of the cur-
rent status of research in this area is provided in a
.~ report published by the TRACOR Corperation (7).

| In all these models, however, no account has bheen
taken of thé vertical structure which is found in many
estuaries, A typical example of this structure can bé
seen in regions of partial mixing and stratification

such as at the head of Narragansett Bay. Here, there

-]5=



iépears a 30% variation in the dissolved oxygen
content between the surface and bottom water layers
(8). Other partially mixed and stratified estuary
reaches undoubtedly show similar vertical structure
in water quality parameters,

The present study will develop a two-dimensional;
'laterally or cross-stream averaged, mass-transport
equation such that vertical structure will be in-
corporated into the model., Then using an A.D.I.
(Alternating Direction Implicit) finite-difference
technique to approximate the original parabolic, partial
differential, mass-transgort egquation, the two~-dim-
ensional concentration fields will be predicted as a
function of time. | ;

o adequately model ail situations for verﬁical
structure a non-dimensional and dimensional vertical
(z) axis model will be developed, The dimensional
model is best suited to regions where variations in
tidal height are insignificant and depth changes are
small such as in the upper reaches of rivers, In

contrast, the dimensionless vertical axis model is



generally applicable to the entire estuary since
it can handle variaticns in depth dqé to tidal height
and significant hydrographical changes in an area,

lIn order to assure that the model predictions
a:e'valid, an analysis of the mass~-transport equation
both for stability and dissipative and dispersive
effects will be performed. 1In addition, the computer-
model transport equations will be checked to assure
that the mass of a conservative substance is indeed
conserved,

Since one of the main water quality parameters
is the dissolved oxygen - biochemical oxygen <emand
system, often abbreviated D.O. - B.0.D,, the computer
model of the mass transport equation will be designed
specifically for this parameter with indications on
how other reaction schemes may be incorporated. ‘The
ability to handle conservative constituents will also

be included.

Once developed, the computer model will be used

to simulate the simple carbonaceous B.O0.D, - D.O.

=17=



reaction scheme for Narragansett Bay as well as an
ﬁccelerated no-load Bay cleanup.

A better perspective of the work to he presented
can be obtained by use of a typical environmental model
{6). Pig. 1-7 outlines such a mocdel, The present
research will attempt only to solve the mass transport
equation, leaving the tidal hydrodynamics to he de-
termined from existing models (1,9). Therefore, the
solid lines in Fig. 1~-7 indicate relations explained

by the present model development while dotted lines

show relationships that are not taken into account.

-

-18-
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CHAPTER 2

MASS-TRANSPORT MODEL FOR AN ESTUARY

ﬁETAf}éD DERIVATION OF THE MASS-TRANSPORT EQUATION

In a turbulent medium the mass balance equation

. may be written according to Bird and al. (10) as

BQ’A 3 n . aeAv

+  —

Q . d G’Aw
3t ¢ 3y 3

) 3 P n 3 P
o A, o, 2 A Q. A
ox ( ®x ox box oy (ey dy )t az-( ®2 oz )
+ SA
where

e A ~ mass density of substance A
ex,ey and ez - turbulent diffusion coefficients
SA - source and sink terms of substance A

u,v,w - time-mean velocity over short sampling times

in the x,y, and z directions, respectively.



In this rather fundamental form several ap-
proximations have already been made, Molecular dif-
fusion has been neglected in anéicipation of the fact
that in most estuarine system processes it is several
orders of magnitude smaller than the turbulent eddy
diffusivity. The diffusion terms are obtained by as-
suming that the turbulent flux terms, u'e; etc, can
" be adequately represented by the product of an eddy
diffusion coefficient and the ensembie mean concentra-
tion gradient. Thus the coefficients e © and e
are the eddy diffusivities for the parameter E:A;

In addition, it'has also been assumed that no
diffusive transports ére caused by therﬁal o? pressure
gradients within the system, All these approximations
have been shown to be applicable to estuarine environ-
ments (1,11).

it was'indicated.that the velocities in Eq. (2.1)
were time-mean velocities over short sampling periods.
By this, it is meant that the time-averaging process

occurs over intervals of time much smaller than the time

for a tidal cycle, i.e, 1 minute periods. This procedure

-21-



" then sucessfully eliminates the stochastic varia-

tion in mass density.

| For a better understanding of the elements or
terms of the mass transport equétion Fig. 2-1 shows the
major transporting mechanisms., In most estuaries the
lateral and longitudinal advective and vertical dis-
persive transports are of primary importance.

Since in its generalized three-dimensiocnal form
Eq.h(2.l) at best is extremely difficult to solve even
in the simplest of cases, the standard approach is
to integrate over one of the spatial variables or time
to, in effect, reduce the dimensionalitv of the equation.
Fof the case at present we note that our aim is to lat-
erally integrate Eq., (2.l1) to achieve a model with vert-
ical structure while simulténeously eliminating the
lateral structure,

It must be remembered in interpreting the results
that we have laterally integrated the equation and not

just dropped one of the spatial directions, in this case

the cross-sectional direction.

The intepretation of the mass d ensity is now an average

=22~
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over a lateral cross section. Similarly, dié-
fusion terms now become not only repFesentative of
the turbulent fluctuations but alsc the dispersive
effect of lateral variations in ?A and lateral shear
in the current, therefore when incorporating these

other effects they will be called dispersive or dis-

. persion terms rather than diffusive terms,

As a first step toward determining the laterally-
integrated, mass-transport equation the coordinate sys-
tem must be defined. The x axis is fixed to the mean
sea levei plane for the dimensional mocel or varies
with the tide height for the non-dimensional z axis
model pointing in the direction of thé estuary mouth
and having'its origin at the most upstream point where
the model is to be employed. The x axis, therefore
will be approximately in the same direction as the mean
flood or ebb tidal flow. The y axis is perpendicular
to the x and in the same plane as the mean sea 1evg1 or
tidal plane. The z axis is then vertically upward or
opposite the direction of gravity and perpendicular to
the x,y plane. Figure 2-2 shows the orienﬁation for a

typical estuary.
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Proceeding with the lateral integration of Eq.

(2.1) we need to introduce the following notation:

‘ B
PB = J;
o

where B is the estuary width
jaterally averaged values of

Now, assuming a distribution

]
Q) =2 [ 1+Q, )]

and similarly assuming a distribution of velocities ac-

cording to:

uly)

wiy)

(3 A dy

UL +u (y) ]

WL +wiy) ]

26~

and P,U,W represent the

?A’ u and w respectively.

(2.2)

(2.3)

(2.4)

of mass density according to:

(2.5)

(2.6)

(2.7)



The definitions of the laterally integrated var-

iables are completed.

- In view of these definitions then:

B ., : o

j QA (y) &y =0 | _ _ (2.8)
Q

B

S a (y) dy =0 _ (2.9)
o]

l_: B

S w (y)dy =0 (2.10)
-]

[ [] "
These relationships show that eA’ u, and w are

essentially distribution functions of'ehf u, and w’
respectively. _ S -
BEquation (2.1) can be laterally integrated, but

first we need Leibnitz's rule which states that:

-~
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3 [fg (x,v,2,t] _ B<fq (x,y,z,t)>

3B
at - at - fg (X,B,'z,t) a_t'
(2.11)
where the notation
B

has been used for convenience. A similar procedure can
be employed when the derivative of £ i3 taken with re-
o spect to some spatial cocrdinatce,
Proceeding term by term to laterally integrate
Eq. (2.1) and employing Egs. (2.2) through (2.12), for

the temporal change term we find:

B
-a-&‘- dy = & (8p) -0 (3) =2
3t Y = 3¢ Ca ot (2.13)
J .
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Noting that B, the estuary width is usually a function
of x, and z only, and not time, then J/3t (B)—>0,

however, for generality, assume B = B(t) for the present

and note that if we have no lateral inflows ?A(B) = 0, then:
B .

FPor the convective terms:

gl

B o B
3ar.u '
A 3 B
j_ Y ¥R S QAudy— ?A(B) u (B) (2.15)
o] o

Substituting for QA and u from Egs. (2.5) and (2.6} res-

pectively, expanding and employing Egs. (2.8) and (2.9)
results in: -

SB d A%
o

0

[ov (K1 + gy u>) ] (2.16)

¥

dy =

d

where PA(B) or u{B) have been assumed egual to zero, under the
assumption of no lateral inflows, A similar approach can be

used to obtain:
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B .
. ae w B ’ *

S a‘: dy = 37 [PW { 4 * Pa w )] (2.17)
o

where Egs, (2.5), (2.7), (2.8) and (2.10) have been used.

For the diffusion terms, laterally integrating we find:

(2.18)

assuming that ex(B) = 0.0 by noting that we have no
lateral inflows and making use of the notation in Eq,

(2.12) results in:

B
3@ 30
d A _ 9. A
S &;‘ ( ex -SQC_ ) dY = ax ex '"ax' > (2 . 19)
Q

Similarly for the vertically (z) directed diffusion term:

B | o
<y ST W E ¥ (2.20)
S 2z %z oz Y oz 2z oz T

o

Substituting Eqs. (2.14), (2.16), (2.17), (2.19) and (2.20)
into Eq. (2.1) results in:
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e

x
(2.21)
o <§ 3 G?PL>
- £ S = SB
oz
B
whert_a S =-;- S SA dy (2.22)
o

Now if we assume that the density variations in the y, or

lateral direction, are small, i.e., lateral homogeneity,

then

pA(y) = 0 : (2.23)

The mass balance equation using the assumption in

Eq. (2.23) becomes:

.}
d JUB WB a<° _A(;&>
P o X -
% BB+ St S - 3=
2 ¢ | S
-3 <e S ay | (2.34)
Z Z
S =SB o
Z . P

-3]l=-



¥

looking at the turbulent dispersion terms, they

can be expanded to,

oP
e = dy = BDx = {(2.25)
arnd
3 9
- A P
S €z dz dy = BDz dz (2.26)
°

where Dx and Dz represent the laterally-averaged dis-
persion coefficients in the x and z directicns, respec-
tively. .

~ Using Eqs. (2.26) and (2.25) in Eg. (2.24) gives
the final form of the laterally-integrated mass-transport

equation for mass concentration P :

JBP JUBP JWBP 3 3p - P, _
% Y Tx " Tz T wm B T B T
(2.27)
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¥

| wﬁere S has been taken to represent a generalized

laterally integrated source-sink term.

| This development has shown how the ordinary
mass-transport model can be laterally averaéed to ne-
glect lateral structure in its formulation, Indicatiomns
of how this model may be adjusted to both the dimen-
sional and dimensionless (z) vertical axis cases will

be provided in the sections on the development of the

computational model.
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o5

DISPERSION IN TWO-DIMENSIONAL

COMPUTATIONS

with the lateral integration of the mass-balance

or transport equation we have introduced dispersion

coefficients which incorporate both the normal tur-

bulent mass fluctuation terms,
dition the variations in the v
the cross stream direction. I

lations to express adequately

'
a! QA’ and in ad-

elocity profile in
n order to develop re-

these dispersive terms

a general lock at the mechanism of dispersicn will

be attempted in this section £
formulation for the problem of

Dispersion of 2 pollutant
following mechanism as describ

flow in various parts of an es

ollowed by a specific
interest.

can be caused by the
ed by Fisher (12). Tﬁe

tuary taken perpendicular

to the mean flow show differences in velocity. ‘Due to these

variations portions of a "fiel

will move more rapidly than th

tions more slowly, hence dispersing the pollutant in the

direction of the flow. This variation causes cIros

a" of pollution constituent

e mean flow and other por-

- e ————— A % r =

s—-sect-

jonal differences in the mass concentration and leads to a



cross-sectional tuébulent diffusion which tends to
transfer constituents from the parts with higher con-
fe?ntration to those with lower concentration. A

similar explanation can be employed for the contribution
of the variations in the vertical and lateral structure
of the mean tidal velocity, u,

Obviously, from the description akove, the magnitude of
the dispersion coefficients employed in any computational
scﬁeme can vary widely, since they are dependent on the
variations in constituent concentrations and velocity
within each section. For instance, if the lateral de-
yiatigns of the mean tidal velocity are small, then the
grid or section sizes may be increased without effecting
the solution. However, if the variations are large, grid
size changes can determine ﬁhe dispersive transport,

Using Taylor's concept (13}, and work based on I.E.
Thomas' (14) doctoral dissertation, Elder (15) determined
the longitudinal and lqteral dispersion coefficients bésed
on the méan veloeity, depth, and bottdm roughness for a
one-dimensional steady flow. Elder found the longitudinal

dispersion coefficient, Dx to be:
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Dx = 5,93 Hu* ' : (2.28)

where ut* - friction velocity or shear stress velocity

H - the average section depth

The shear stress velocity is related to the mean

velocity by the relation:

}
Te 2 1 -1

u* = { '§ ) =ug <, (2.29)
where
q’x - bed shear stress
u - uniform flow speed

g - gravity

Cc
z

?

Now combining Eqs. (2.29) and (2.28) results in:

Chezy coefficient

density

- -1
D = 5.93 Hu gl/2 C (2.30)
" z oA

For the lateral turbulent dispersion, perpendicular to the

mean flow, Elder obtained:
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¢ = 0.23 Hu* , (2.31)
Ty .
Fisher (12), and Fischer (l6) have indicated that
Elder's approach was correct for channel flows but showed
poor comparison to actual river data, always underestim-
ating the actual longitudinal dispersion coefficients
by several orders of magnitude, This they attributed
to the fact that Elder's work only included a vertical
variation in the mean velocity u, whereas, in actual
stream flows, the lateral variat;on in mean velocity is
usually the more important mechanism. in longitudinal
dispersion,

Fischer (16) then extended Taylor's analysis to

three-dimensional flows and determined that:

B =-4 fn(y) " (y) F,(y) dy o (2.32)
o
in which
A - cross=sectional area
B - width of channel
H(y) - depth of channel at point y

§§y) - position function

u” (y) local depth-averaged velocity deviation

i
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" a— .—..-.-1_._ L]
u*{y) = H(y) 5 u' dz (2.33)
o
where
u’(z) - vertical deviation of mean velocity
and
Y b4 H
= 1 .
Fp(y) S C A dy S S u' dzdy (2.34)
o Y ) o

~Substituting Eg. (2.33) and (2.34) into (2.32) results in:

B
N Yo y &
po=-3 | ww aw S, Tam S f, v e e
o

{2.35)
in which Q;Y has been assumed as that obtained by Elder in
Eq. (2.31). 1

Experimental work performed by Fischer {16) has shown
that the vertical variations in the mean velocity are small
for river flows but can be quite_sizeable for estuarine
applications.

Since Bg. (2.35) is rather complicated from a compu-
tational viewpoint, another prediction method was developed

by Fischer (16) based on a Lagrangian time scale,
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this method is of a more approximate nature, but

more easily applied. The longitudinal dispersion

is assumed of the form:

D= (@’ T, | '  (2.36)

in which

ut -~ variation of u from the cross-sectional
mean

Tt - the Lagrangian time scale

An adequate expressicn relating the bulk channel

parameters has been found to be

42
1c
Tt = 0,30 m_— - (2.37)
where
1c ~ the characteristics length of the channel,

defined as the distance on the surface from
the point of maximum velocity to the most

distant bank



r = the hydraulic radius
u* - the shear stress velocity as defined in

Eq. (2.29)

For slowly time varying conditions such as occur
in tidal regions and estuaries, the mechanisms of disper-
sion described previously would still hold, If there
are significant variations in mean tidal velocity in
a lateral direction Eq. (2.35) or Egs. (2.36) and (2.37)
should be used, however if the lateral variations are
small Eq., (2.30) would then be a proper.formulation. .
In addition, the longitudinal dispersion is in- 2
fluenced by the wind through a local circulation and
wave motion, Wilson and Masch (17} have performed re-
search in this area of a preliminary nature, but do not
indicate any general formulation of the wind effect term.
In many estuaries there are regions where only
partial mixing or even stratification occur and these
effects must be included in any formulation of the vertical -
dispersion Ebefficient. Pritchard using an analysis of
éalt ﬁalande data on the James River estuarylfla) has in—

troduced a time-averaged vertical dispersion coefficient

-40=



bésed on estuary physical characteristics (19).

The vertical dispersion coefficient can be ex-
pressed as a product of a mixing length ?S and a
characteristic velocity, u** which is proporticnal

to the root mean square turbulent velocity fluctuations,

D, = éu** (2.38)

In a vertically homogeneous medium, the mixing length
would be a function of the distance from the boundaries
only. Since most estuaries are very much wider than
deep, the boundaries may be approximated by two paral-

lel flat plates, Using this analysis Montgomery (20)

determined that:

¢' . X z (H-2) )
H

(2.39)
where
X - is a constant = .4

H - is the depth of the estuary at that point

z ~ is measured downward from mean sea level

When density‘increases with depth, more energy is
required to move a parcel of water a given distance vertically

than in the case of a homogeneous estuary., To account
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for this effect Kent and Pritchard (12) modified

'

Eq. (2.3%8) to obtain

. .z (H-2) + -1 _
# = (1 6p R,) | (2.392)
for vertically non-homogeneous estuaries. In which
Ri - Richardson number
g 20 g ,2 -
where
(3? - empirical constant ’

The characteristic velocity u** as shown in Eq. (2,38}
is composed of two parts:

(1) "f£low induced" turbulence associated with the

mean streaming velocity of the free fluid.-

(2i random motion induced at the-surface by the wind.

The first part is essentially determined by the mean tidal
velocity and vertical stability, while the second part is )
dependent on wind conditions and vertical stability. The
wind induced portion can be expected to decrease exéon—-

entially with depth and assumed proportional to the orbital

wave velocity. Then the characteristic velocity
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becomes:

z{H-2) -1 WH =271z -1
*k = 1+ #$A T == 1+ .
u Y 112 ( 69&1) . Py ¢ Wi ( Bpr) i
(2.41)
where
uks - rms turbulent velocity fluctuations
u - mean flow velocity
WH -  wave height
WL - wave length
- constants of proporticnality
o 50 Bo | | prop Y
WT - wave period

Substituting Egs. (2,3%9a) and (2.41) into Eg. (2.38)

the vertical dispersion coefficient results in

2 2 '
- Uz~ (H-z) -2 4 2(H-2) WH -2Wz
Dz \p 15[3 (1+ epRi} * p. H. WTr € WL

(1 +ngi)'2 (2.42)

where

'Lp’@p”('p - constants for a part:._cular estuary

=43~



For the James River Estuary during the period of

study (summer)} the constants assumed the following

A

values (19)

= .00859
e

& P = 276 (2.43)

OQP = ,00957

Pritchard when presentiné these results states that the
formulation has been applied only to long-term movements
for the James River Estuary and therefore has questionakla »
value when employed in short term time-varying situations
or to other estuaries, However, lacking any better over-
all representation at this time, Pritchard's results will
be used for the development of this model and the results
interpretedvgccordingly.

In order to develop an estimate of how this form-
ulation behaves under typical estuary conditions, a brief
numerical experiment was conducted, Figures 2-3, 2-4
and 2-5 display the variations caused by wind for a

constant density field. Increasing wave length and wave

L]
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height: and decreasing wave period cause increases
in the vertical diffusivity. Figure 2-6 shows a
_vértical diffusivity profile for a variable density
profile typical of stratified conditions., A series
of profiles similar to those of Figs. 2-3 to 2-5 could
have been displayed for ﬁhe variable density profile but
show no new results, and therefore have been omitted.
An important point to notice in comparing the vertical
disﬁersion values for a constant density profile and those
for a variable density profile is the difference in their
relative magnitudes, According to Pritchard's formulation
the stratification profile inhibits vertical mixing and
therefore sharply reduces the vertical dispersion..
Comparison of the longitudinal and vertical dis-
persion coefficients show that the former is always at
least several orders of magnitude greater.than the 1at£er
fOr.estuarine environments., This fact complicates the
modeling effort since dispersion becomes anisotropic, and
the dispersive term of Eq. (2.27) should include cross

product terms such as:



®», = ®, .
ox * sz az) 8] 3 [(sz dz * Dzz X

xx * 3z

0 (o, ) B]

(2.44)

where the dispersion coefficients D , D D  and

xx° Xz, zX
Dzz are dependent on the current magnitude and direction,
From a computational approach the use of Eg., (2.44) is
very unwieldy, hence another method should be found.

Holley (22) made a comparison of the mass transport

caused by longitudinal dispersion and advection,

op
BD - D
X OXx _ x Olnp
R="S5e ~% ox (2.45)

By comparing these guantities, he found tnat the ad-
vective transport was much-larger than that due to the'
dispersive mechanism, therefore, Holley coﬁcluded that
except in regions of discharge of constituents where dis-
persive transports are large, the advective transport is
most important.

Based on this argument it can be stated that the
anisotropic dispersion effects maf be replaced by an

isotropic approximation in each direction, and that the
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cross products of dispersion appearing in Eg. (2.44)
can be assumed negligible. Also if it is further
assumed that the lateral profile of‘the tidal velocity
is approximately constant, then Egq. (2.28) can be used
to represent the longitudinal dispersion since small
variations in Qx caused by this approximation have little
effect on the ratio of the dispersive transport to the
advective transport. Numerical experiments on the model
confirm this conclusion.

In the present model development a modified version of
Eq. (2.28) has been used to réprésent the laterally-
averaged -dispersive coefficient and Eq. (2.42) employed
for the laterally-averaged vertical dispersive coefficient.-
Another approach for obtaining these values is to use

experimentally determined quantities, but this method

is time consuming and expensive.



CHAPTER 3

COMPUTATIONAL MODEL

DERIVATION OF FINITE~DIFFERENCE EQUATION

The mass-transport equation as developed in

Eq. (2.27) permits a large number of finite différence

_ approximations. For each approach an analysis of the
convergence, and stability characteristics has to be
performed, such that some assurance is gained that
the difference approximations will actually represent
the solution toc the proposed eguation. Theoreti;al
literature of the behavior of finite-difference approxima-
tions for parabolic equations such as the mass transport
equation is extensive (23) however, few large computational
models exist to serve as a guide in designing a good
model, a notable exception is Leendertse's two-dimensionai
vértically-averaged models (6,24,25).

The computational model presented here for the

———— e - —

transport model is based upon methods developed by

.Peaceman and Rachford (26) and bouglas and Gunn (27) and



is called an A.D.I. method standing for Alternating
Direction Implicit.

‘Following work by Leendertse (6) a space stag-
gered grid system is used to locate the discrete
values of the variables, Figure 3-1 shows the lo-
cation of the variables on the grid system. The values
of tidal height s' and mass concentration P are defined
_ on integer values of M and N where M is the x directed
index and N is the z directed index, while Dz, W and
'Dx,U are located at integer values of M and half in-
teger values of N and integer falues of ¥ and half
integer values of M respectively. The estuary
width B and depth H are both defined at half in-
teger values of M and N. With this staggering system a
computational cell is then defined as noted in Fig.
3-1., For a typical cell then the variables are de-
fined in blocks having sides between each integer values
of M and the next half integer value and between in-

teger values of N and the next half integer value.
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The major advantage of this grid system form-
ulation is that there exists a centrally located spat-
~ ial derivative in time and space for the linear terms.
More comments will be made on the advantages of the cen-
tral location of these linear terms in Chapter 4 - Effects
of Computational Model Approximation.

The laterally-averaged parabolic equation for the

dimensional mass transport equation from Chapter 2 is

oP _ 9 P 3 3

op 3 3py _ 3 3
B 3t gE.{BDx Bx) * 3z (BDz Bz) ox (uBP) - oz (wep)

(2.27)
+ BS

where the'variables hava been préviously defined, For

the purposes of the derivation of the finite-difference
equation it will be assumed that po generalized source

or sink (BS term) terms are present. This approximation
has no effect on the general finite-difference formulation
for the mass-balance equation‘énd therefore neglecting it
should havé no effect on the computational model for a

conservative case. Indications for inclusion of the
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reaction schemes will be outlined later in this

' chapter,

Using an approach presented by Mitchell (28) the
finite-difference approximations to Eq. (2.27) will now

be derived, 1If we rearrange Eg., (2.27) one can obtain:

2 .1 .3 dp, 3 }p,
St B[ax(sn ax’*a(BDa"ax‘“BP’

3 o .
- 3 (wBP) ] (3.1)

In general this can be represented in the form

se _ 1
vy B, LO{P} (‘3.2)

{

where
Bo - some spatial or temporal averaging of
the estuary width
L° - linear operator defined as:

Lo-.—-. nl (annl) + D, (annz) - D,UB - D,WB (3.3)

where D, = 3/x and D, = /32
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We can now let:

x = max

z = nbz (3.4)

m,n,n - are integers and

|-
[
“o
o
N
|

are the spatial grid sizes

e
o
|

is the temporal grid spacing

Difference formulas ianvolving two adjaéent time
levels and called two-level schemes are obtained em-
ploying a Taylor expansion. Expanding P{x,z,t}) about

zero gives:

5
P(x,z,t + aAt) = (1 + At%: +-2]-'-1(At)2a—2-+%l
) ot :
3 | (3.5)
393
( aEl———; + ....) P(x,z,t)
3t
and making use of:
X xz x3
6 =1+x+‘2'_ +"3"'-+__.. - . (3.6)
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then results in:

P (x,z,t+ At) = exp ( At %E} P {x,2,%t) : (3.7)

and using the following notation:

P(x,z,t) =P(max, ndz, Lat) =P
. m,n

(3.8)
1+
P(x,z,t + At) = P(max, naz, ( L+ 1) at) = P oo
¥

(3.9)

and after employing Egs, (3.2), (3.7),(3.8) and (3.9)

we find that:

tna

m,n

P L) P (3,10)

!

Now, we need to incorporate several definitional relation-
ships which will be useful before proceeding. An exact
formula derived by Hildebrand (29) connecting D1 and D.,

the exact formulae, to Sx and Sz’ the central difference

operators is:
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2 . x _ 1
1 ax sinh 2 Ax [Sx
2.2
+143 $.5 ]
275y %
and:
2 . -1 Sz = 1
DZ Az sinh 2 Az ( Sz
2.2
+143 85 Fo]
2%s: 2
where:
[ ')
S-pl = p -p
X m,n @+l/2,n m-1/2,n
2P2 =P£ —ZPQ +Pn
X m,n m+l,n m,n m~1l,n
and similarily:
] .
S P -} ~--p'q
2 m,n m,n+1/2 ° m,n-1/2
, 1 2 2
5, P n “Puope1 2P o P
m, =, Rt m,n=-1

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

With these definitions complete we may proceed with the

remainder of the derivation.

=59



Separating the exponential term in Eg. (3,10) gives:

1 at 2+1 . .1 A 2
exp [(~-3 B_ Lo) ) Pm,n = exp [( 3 B Lo)] pm,n

o
(3.17)

Now substituting for the linear operator, Lo from Eq.

(3.3) into Eq. (3.17) gives:

At
- -+ -
exp ZBo Dl(BDxDl) DZ(BDZDZ) D, UB

G+ 1 At
- DZWB } ]l P = exp [ E'go {Dl (BDxD]_)_

m,n

4
+ D, (BDZDZ} - D,UB - D,WB } ] Pm,n _ (3.18)

Expanding Eq. (3.18) substituting Bgs. (3.1l) and {(3.12)
to the first order in Sx and Sz’ respectively, and

combining constants as in Eg., (3.19)

(3.19)
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gives:

r r '
11 22
[1-2—B°- §, (80 38 ) 10 - g5 6, (8D, 3 )1
r, S r, ¢ L+
(145 )] (1+35 5,08 12, =
| 'rll S 22 S
[1+2—B-°— (BD_ % ) [1+ZB° ,(BD, Sz)]

r1 % r 2
[1-35 S () (1-2 $ mie

o 2B d
o

(3.20)

Making use of a Peaceman-Rachford splitting technique,
a finite-difference approximation for the first half

and second half of the time step is presented, The
{+ 1/2

notation Pm n indicates the laterally-averaged mass
»

density at the end of the first-half time step, and

2+ 1
Qm n indicates the laterally-averaged mass density
?

at the end of the second-half time step or the end of the
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first whole time step. Further information on how

these splitting techniques work can be obtained from any

of the finite difference refererices on the A,D.I. methods

(26,27,28). For the first half time step, going from

time level 2 to ,Q- +}- 3

2
F11 S T, 94+ 1
[1-35 By B0 001 [1+gy S, 0r, 72
r r ﬂ
22 2
=rLl+ 2B S z(BDz <E’z)] [ 1—23 Sz(WB) ] Pm,n
. O G
(3.21)

and for the second half time step proceeding from time

level 9+l to P.+ 1,

2
Y ¥y £+ 1
(1- 280 5z(BDz Sz)] 1+ 2Bo SZ(WB” Pm,n
T11 Ty [
=[1+-§-§: gx(anx Sx)] [1-3-50 Sx(UB) me’n
(3.22)

-2 -



Equations (3.,21) and (3.22) form the fundamental basis .
for the dimensional vertical axis computational model,
Other splitting techniques are avaiiahle as noted by
Mitchell (28) but will not be considered here.

Egquations (3,21) and (3.22) need to be ex?anded to
present the finite-difference approximations in a more
useable form. Multiplying the terms in Egs., (3.21) and

(3.22) and neglecting terms of order:

r.r

1 11 :

5, SX(BDx%x) 8x (UB) (3.23)
and:

r.r

222

——4B° Sz (8D, S ) Sz (WB) . (3.24)

while replacing the notation Sx arzdsz by their ap—l
propriate values as defined in Eqs. (3,13) and (3.15),
respectively, results in the following for the first half

of the time step, from time level  to time level.£+ 1/2:
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eta i1 f¥ih L+n 11V§

P _~-—— B D -
B m,n 2 m+l/2,n *m+l/2,n (Pm+l,n Pm,n

r f+73 fe'n  f+'A r g+’
3L 3 D (p_ _ -P ) + Ly
2 m-1/2,n *m=12,n “m,n “m-l,n 2 “m+l/2,n

t+'a r et L+l
B P - - ) U B P
m+l/2,n mw+l/2,n 2 n-1/2,n m-1/2,n m-l/2,n =

] g {

r
22
o — P -
BoPm,n 2 Bm,n+L/2 Dzm,n+1/2 ( m,n+l Pm,n

r, 2
_22 g Bt

2 m,n-1/2 Dzm,n-l/2 m,n  m,n-l

fﬁ%;l’ B p!' + fz-w”i B l?l
2 m,n+l/2 m,n+l/2 m,n+1l/2 2 "m,n-1/2 m,n-1/2 m,n-1/2

(3.25)
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and for the second half of the time step from time

level 8+ 1/2 to time level § + 1:

041 Ty J AL f41 1+
: l?'oPm,rl o2 Bm,n+l/2 Dzm,1'1+1/2 (Pm,n-l-l—Pm,n
. Tsa in Lo jad)

D -
2 Bm,n--]./z Zm,n-1/2 (Pm,n Pm,n-l)

i+ L+ r, v g+t
—'2— W

r
2
*2 W m,n-l/zsm,n-l/ZPm,n-l/z =

m,n+1/2 Brn,n+-l/2 pm,n-f-l/z -

¢ty T 11 g+ R/ J X :)

== -P
B<:apm,n 2 Bm-'rl/z,n D"m+l/2,n (Pm+l,n m,n

r.. 4t 2+’ gx'n
g A B D (p - P ) -
2 m-1/2,n *m-1/2,n "~ m,n m-1,n

r S+l +'h
i U B P
2 m+1/2,n mwm+l/2,n m+l/2,n +

Q+'h, 14— if2.

Ly B ’
2 “m-l/2,n m-1/2,n m-1/2,n

(3.26)

-65-



Close observation of Egqs, (3.25) and {(3.26) re-
veals that all the variables presented do not conform
to the space-staggered grid system of Fig. 3-1, in
particular the mass densities in the convective term
and the estuary widths in all terms. To force these
variables to conform to this grid system and at the same
time maintaining a spatially-centered convective term
which is important for stability considerations, as

will be seen, the following changes have been employed:

1

P, n+1/2 > (Bor1/2,n41/2 Bne1/2 ,n41/2) 2
(3.27)

B > (B +B ) £

m,n-1/2 m+l/2,n-1/2 "m-1/2,n-1/2" 2

(3.28)

B = (B +B ) B

m+l/2,n m+l/2,n+1/2 "m+l/2,n-1/2" 2
(3.29)
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1

Bu-1/2, n 7 Bo1/2,n+1/2 Bn-1/2,n-1/2 2

(3.30)
+
B> Buo1/2,n+1/2 Bn-1/2,n-1/2 But1/2,n-1/2
+ B L
m+l/2,n+1/2) 4
(3.31)
P ———>3 7
m+l/2,n m,n (3.32)
pm‘—1/2,n : Pm—l,n ) (3.33)
P — P |
m,n+1/2 m,n (3.34)
P, n-1/2 > Bn,n-1 (3.35)



Since substitution of Egs., (3.27) through (3.35)
into Eqs. (3.25) and (3.26) becomes a tedious exercise in
writing and prone to error, a notational scheme will be
developed in the next paragraph so as to present the
difference equations in an abbreviated and physically
intuitive form.

The following notation, as presented by lLeenderste
~ (6) is used as an approximation of the differential

equation by a system of difference equations.

Pm&x, ndz, ,QAt)

where
(x,2,£} = (m bx, nﬁz,ﬂ-dt)
and

mn,d =0, + %,:1,:%

The symbols used for differencing and averaging are
listed belcw.' Only equations for x are shown but similar

results for z and t are also valid.

F -%‘- {F [ (m-%) Ax, nhAz,LAc] +

(3.36)
P{ (m - ‘;") Ax, nbz, QAt]}
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§.F =i 1 ( (m 2)ax, naz, Lat] ~Fl(n- 3) A%, nAz,fAt}}

(3.37)
P -%{‘F [{m +-§-)Ax, (n+ %)Az,ﬂ&t] +
1 1,
+P[(m+5)Ax, (n-'i')Az,QAt] +
' ' 1 1
+F[(m-'i')bx, (n+E)Az,£At] +
1 1 .
+ F[('m - ‘2;') Ax, (n-3) Az, Ag] {3.38)

A’'special notation used to indicate a shifted time level
is:
S- l F = 2 F [maAax, nAz (£+'];)At]

+ E t At ] r 2

-

- P [mAx, naz, LAt] (3.39)

'r+ =F [max, ndz, ({+ %) At ] (3.40)

-§9-



The set of difference equations will now Ee pre-
sented in order of their use and employing the notation
of Egs. (3.36), (3.37),(3.38),(3.39) and (3.40). For
the first half time step, going from time lex}el 2

to time level Q+ -:?-E- .

x -x -z

fu,rd 8 (FTwET

S+_%._t [PB] +Sx [ B

=z - X e
-S}-‘[B nxsxp+]-Sz B nzSzpl+ss-o (3.41)

(at point (m,n® )

For the second half of the time step, going from time

level Q+% to time level 9.+ 1:

| o= - 2 -.x - X ~
8+ t[PB]+Sx[B UP ]+Sz[B L

L
2

. -z - X = _
—Sx[B nxSxP]-Sz [ B DZSZP+]+BS—O

(3.42)

(at po.i.ntl (m,n,ﬁ+ %" ))
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In many estuaries the use of a dimensional model
as just derived limits the definition of the vertical
structure in the regions in whicﬁ that structure is most
important - shallow areas near the head of the tide, and
also fails to account for tidal height variafions. To
circumvent this problem and also eliminate many trouble-
some boundary conditions at the estuary bottom, the non-
‘dimensional z, (vertical) axis model of the mass-transport
equation will be outlined in the following paragraphs.
The derivation of the finite~difference approximations
is analogous to that just obtained for the dimensional
z axis model and therefore will not be repaated, only the
final difference approximation being shoﬁn._

Using the depth of the estuary, mean sea level depth
plus instantaneous tidal height, the =z axi& of the mass-
transport eéuation given by Eq. (2.27) can be nondimen-
sionalized and a dimensionless z axis laterally-averaged

.mass-transport equation found to be:
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JHP

B T S e _ 8 &P
Bt + % (HTUBP) + _611 (WnBP) ox (HTBDx -6-;)
BD
_ 9 .z 2P -
an ¢ TEEY ) +BHS = 0 (2.27a)
where

Hr - estuary depth mean sea level depth.plus tidal height,

(B + §)
N =2z/4
i¢-=tqn + 1 —%%- + ul -%E
W.n - product of the dimension less vertical velocity (w)
and depth (H) or aH
) 5 . . \ ,
3t B derivatives of time and space in the (x, T, t) co-

ordinate system.
and other variables remain as previously defined. Higher order
expressions resulting from the transformation of the dispersion
terms, order‘%_ (gg D é_gg ); have been neglected based on a
x 6x "x T 3
comparison of the relative importance ¢f the dispersion and
advection processes (22).

In finite-difference approximation and using the nota-
tional scheme as outlined in Egs. (3.36) through (3.40) re-
sults in:

For the first half time step from time level L to time level
ﬂ.+%

8 -2

1 = = - =3 =X
+St(P(B) (H+ O] +45 [(H +8) U P, B
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=Z =X =Z FX -z
+ 6ﬂ[P WﬂB ] - 6x [(H™ + & ) Dx+ B 6x P.]
p_B"
-6 [— & = o=
1 o x Tp] +B(H+E§ §=0
(H + € (3.41a)

For the second half time step from time level & + % to

2+ 1:

a+51__t[p (B) (H + &) + ax[ﬁz+§") 8% UP" |

+ &, -2

=X ~Z =X =2
N [B W+“ P, 1 -6 [ (H +87) B D & P
D R = =
= Oy 0 - bp Pyl +B (HFE) S=0 (3.42a)
(B + §+)

In the discussion following, the dimensional 4dif-
ference ecuations will be used as the model %o present the
solution algorithms but a similar approach can also be em-
ployed for the dimensionless z axis model and therefore no

difficulty should be encountered.
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SOLUTION ALGORITHM

In solving A.D.I. type problems the approach is to

solve Eq. (3.41) or (3.4la) in the x direction or on 2

given column N from time level.QtoQﬁ%- and then with

these results for mass density to solve Eq. (3.42) or

(3.42a) in the z direction or along a given row M from

> In order to understand

. time 1eve19-+ L to Q-i- 1,
clearly how this approach is employed Egs. (3.41) and

(3.42) will be expanded and the positions of their terms

in the staggered grid system noted.
Using the notational definitions from Egs. (3.36},

(3.37), (3.38), (3.39) and (3.40) and expanding Eq. (3.41)

results in:

For the first half time step from time level ? to time

level § + 1/2,

{4112
2_ Bv1/2 .n+1/2 Bme1/2,n=1/2"Bno1/2 n#1/2*Pn-1/2 1n-1/2"Pm
At 4 | i
+ +
-2 ( Bm+_142 ,n+1/2+Bm+l/2Ln-l/2 Bm-1/2 n+1/2 Bm-l/? .n-l‘/Z)P 4
At 4 m,n
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+

1
4

1 8+ f+'0
—— (B +B ) U P
4 Ax ' m+l/2,n+l/2 Tm+l/2,n-1/2° "m+l/2,n"m+l, n +

2+'2 g+

e +
Ax (Bm+l/2,n+l/2 Bm+l/2,n-1/2) Um-i-l/Z,n m,n

1 | S L+l
(B +B ; Y u P
4 Ax ‘“"m-1l/2,n+l/2 m-1/2,n-1/2" "m-1/2,n m,n

1 e’ g4y
(B +B Y u P
4 Ax ' m-1/2,n+l/2 "m-1/2,n-1/2° "m-1/2,n m-1,n

L __ (s +B )w'l pg’
44z “"m+l/2,n+1/2 "m-1/2,n+1/2 m,n+1/2 “m,n+l

N | ] g
2 2z Cnrl/2,n+1/2 Pm-1/2,0+1/2) "m,n+1/2%m,n

1 3 )

252 Cu+l/2,n-1/2"80-1/2,0-1/2" "m,n-1/2%m,n

1 (B +B Y W 2 P :
4Az m+l/2,n-1/2 “m-1/2,n-1/2° "m,n-1/2 m,n-1

1 | frtia L+'h

2(A'x)2 [ (Bm+1/2:n+1/2+3m+1/2,a-1/2) D"-+l/2,npm+1:n]

1 . ) Dﬂf'h_ P!-b’fz
2(Ax)2 l‘Bm-v-l/'2,n+]./2 Bm+1/2,n-l/2 Xm+l/2,n m,n
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' 1 ' | T3 d+'n

f 2 { Bm-l/z,n+1/2+3m-l/2,n-l/z) D”m—L/Z,an,n]
2 (ax)
, fen A+
-1 2 Boo1/2,n+1/2"B0-1/2,n-1/2) P*m-1/2 0 m-1,n’
2(Ax) '
1 | A
T a2 [Bri1/2 n+1/2*Bn-1/2,n+1/2’ Pm,n+1/2%m,n+1]
L | '
* 2 (a2 B +1/2,n-1/2"Bn-1/2,n-1/2) PZm,n-1/2"m,n’
1 ) ]
* 2 022 B r1/2 ,n+1/2"Bn-1/2,n+1/4) Pz ne1/2%m,n!
1 2 ]
- 2 Bms1/2,n-1/2"Bn-1/2,0-1/2’ P?n,n-1/2"m,n-1!
2(s2)
+ L (B +B +B +B Y 8
4 ““m+l/2,n+l/2 m-1/2,n-1/2 "m+l/2,n-1/2 "m-1/2,n+l1/2

(3.43)

Similarly expanding Eq. (3.42) but combining terms with
similar coefficients for writing convenience:
Por the second half time step from time level £+ 1/2

to time level 2+ 1:

. -
_— + H
at (But1/2 n+1/2 Bm+1/2Ln-1/2+Bm—1/21n+1_/2+3m—1/2,n-ljz)(P!* k
4 - m,n m,
1 f+'ra 1+ i+
-_— * +
* 44x { (Bm+l/2,n+l/2 Bm+1/2,n-1/2)Um+l/2,n(Pm+l,n Pm,n
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1 L+ta fsn L+'2
2 5x ! Bu-1/2.n41/2"Bn-1/2,n-1/2 "n-1/2,0 ®m, 0 Fmn-1, 0

1 g+ 2+ fer

+ + )
40z Bm+l/2 ,n+l/2 Bm— 1/2,n+l/2 )Wm, n+l/2 (Pm, n+l+Pm, n)

1 }_-H l-l-l Q_-”
4Ah2 [(Bm+l/2 ,n-l/2+Bm-l/2 ,n-l/z)wm,n-l/z (Pm,n+Pm,n—l)

1 . ) A+’ (Pb-'f'z_ Qv 12
- 2 [(Bm+l/2,n+l/2 Bm-i-.'L/2,n-l/2 Dxm+l/2,n m+l,nnpm,n)

2(Aax)

1 ' e Retia Q2
+ ———

Dy )

+ -
2(Ax)2 [Bm—l/Z,n+l/2 Bm-1/2,n-l/2) m-1/2,n(Pm,n Pm—l,n

1 2+ L+ L1
2(82)2 ((Bor1/2,n+1/2 Bn-1/2,0+1/2] P2 n+1/2 (B, n+1 " Pm,n’

1 $4 [T Y
2(Az)2 [(Bm+1/2,n-1/2+Bm-l/2,n—l/2) D’m,n—l/z (Pm,n-Pm,n-l)

1 .
+ = + + +
2 Borl/2,n01/2 Bne1/2,n-1/2 B0 1/2,0-1/2 20172, ne1/2) 3

(3.44)
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A close examination of EQ. (3.43) shows that it can

be written in the form

o' | ) t+'f2
aP +bh P + ¢ P = d
mm-l,n mmn mmotl,n m

{3.45)
This can be accomplished by multiplying Eq. (3.43) by
T = At/2 and collecting similar type terms. It is
to be noted that this equation involves only grid points
on a given column N. The values of a_ b ¢ and dm are

2 >

then given by:

Y pe'r2 | rr’ f+'12

a4 A4x (Bl)Um-l/Z,n - 2(Ax)2 (B1) D*_m-l/?,n
v f+'2 v L+
bm = B0 - 4 ax (81) Um-l/z,n T3 ax (82) U::1-&-1/2,n
4w g+ Y2 ™ L+
+ (B2} D + {(Bl) DX
2( Ax)2 Xm+l/2,n 2 ( Ax)z m-1/2,n
(3.47)
- o | T 7Y
c = (B2) Dy + v L+
B 5 (ax)? m+l/2,n  Tax B2) Upiy/oon
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and

L2
dm =P ,n (BO) - 4 02 (B4) Wm,n+1/2(Pm,n +E'm,r1+].)
: 2 3
+ 4’:7‘ (B3) Wm,n-l/Z (Pm,n ¥ Pm,n-l)

N ! ! 3
' 2(&2)2 (24) Dzmsn"'l/z (Pm:n*’l - m,n)
2 )
* ""T'"'"z (83) Pz n-1/2(Pm n-1 ~ Tam a) - (BO) S
2(4ﬁz) » 3 24

in. which for notational expediency:

BO 1 [B

+
3 [ Brv1/2,n+1/2 780172, n+1/2 Bre1/2,0-1/2 " B0-1/2 , n-1/2!

-

o
Bl Bn-1/2,n+1/2 Bm-1/2,n-1/2
. .
B2 Bm+1/2,n+1/2 Bm-i-l/il ,n=1/2
(3.50)
+
B3 Ba+l/2,n-1/2n-1/2,n-1/2

+
B4 Ba+1/2,n+1/2 Pn-1/2,n+1/2

79



Using a similar approach as shown above, Eq. (3.44)

can be written in the form:

p i 4y p i L o p o3

a .
n m,n-1 n m,n n m,n+l n

(3.51)
Noting also that Eq. {3.51) involves only grid peints

on a given row M. The values for the coefficients a
. . r

bn < and dn are given below using the notations in
3

Eq. (3.50)

141 i+

4 - 7

n = daz (B3) Wo,n-1/2 —— (B3) Pry n-1/2
4(Aaz)

(3.52)

£+ ‘y t+1
A (B4 Wi Y BO - gy B3 ¥p a1

h =
n
(3.53)

4y 27! T a3 S+
B4) D + B D

+

L+ 1 {+1
(B4) Dz, 41/2

¢ == (B4) W -
n 4Az m,n+l/2 2(Az)2

(3.54)
and: )
A+’ 1T L+l | DUNS 7Y

dn = Ptu,n B0 - 3 aAx (B?) Um-t-l/z,n {Pm,n m+l,n)




y atlh, fv'n 44'h v

* %ax (B1) Uﬁ-l/2,n(Pm,n+Pm-l,n) * 2(Ax)Z(Bz)

1+ | 4+ etz 1 f+'2
Dxm*l/Z,n (Pm+l,n - Pm,n’ - 2(Ax)2 (81) Dxm-1/2,n

I+ ey
(p ~P ) ~Y(BO) S (3.55)

m,n m-1l,n

In the above equation $ has been used to represent
a generalized source and sink term combinaticn. 1In a
generalized approach for a reaction scheme as presented
by Leenderste (24} S becomes the'combinétion of a reaction
matrix and a source-sink term which %ill bs presented
later in this chapter.

| It will be instructive at this time to note the

positions of £he various components of Egs. (3.46) through
(3.49) and Egs. (3,52) through (3.55). First however, Fig..
3-2 shows the position of the various widths in the com-

putational system. Close examination shows that the widths

chosen for any particular term such as U;W,Dx, and Dz are
always chosen so as to be spatially centered around these
variables. This approach alleviates any possible com-
putational waves from being generated by discontinuities in

the width values between adjacent grids.
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FPigures 3~3 and 3-4 show the grid positions of
the terms given by Eq. k3.46) through (3.49). Similarly
Figs. 3-5 and 3-6 show the grid bositions of the
terms given by Egs. (3.52) through (3.55). Observation
of these figures displays that the location of terms
in the grid system used for the ccefficients a,b,c, and
d occur in a direction perpendicular.to the computation
.direction, thus showing the alternating direction charac-
teristics of the method,

Figure 3-7 presents the combination of the first
and second half of the time step and verifies the fact
that this sclution approach is also centerad in time
as well as in spatial coordinates.

Much comment has been made concerning the des-
-irabiliﬁy to have variables centered in time and space in
this section. The reason for this concern will become
apparent when the dissipative and dispersive effects of
ﬁhis solution approach are consequently studied in Chapter
4 - Effects of Computational Model Approximation,

To solve Egs. (3.45) and (3.51) for the mass densities
requires the identical scolution approach only employed

in a different direction. Therefore:
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{1+ 2+ 1+

P +¢c P = d
mpm-l, n mm,n m m+l,n m

(3.45)

will be used for the purposes of explanation. Dropping
the time notation {0+ 1/2 and the z direction grid

number (N), since they remain unchanged, results in:
a + b P + =
mpm—l mm cum-i-l dm

(3.56)

Assume that we have a closed left hand beundary, as
shown in Fig, 3-8,
- Then the advective and diffusive transport from

grid M-1 to M is zero, or equivalently a =0, Now Eq.

(3.56) becomes: !

hum + cum+l = dm .‘ (3.57)

For the next point (M+l) we have:

+ =
2 1% e 1Pmel T Cmerfmez T Inel

(3.58)
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Solving Eq. (3.,57) for Pm results in:

dm cm . .
P25 " b Tanl (3.59)
m m

or rearranging:

Pm = Qm+l + Em+l Pm+1 (3.60)
where:
dm
Qm+l = 5 (3.61)
m
cm
E:m-!-l =" (3.62)
m

T6 solve for P41 We substitute Eg. (3.60) into Eq.

(3.58) and obtain:

P = 9pt1 Pl T Cmnl b
mtl o E Ly 20 ™Pna E 41 2p+1 Ppa B2
' (3.63)

or-letting:

e = _omtl | (3.64)

m¥2 Em+l am+1 +bm+l _
and:

0 dm+1 - am-l-l Qm+1 3 GSf

m+2 E a + b :

m+l m+l m+l

-9]1~



obtain:

. :
ml - Pme2 ¢ ez Pmeo (3.66)
Equations (3.64), (3.65) and (3.66) represent the general
form of the recursion relations to be solved. If the right
hand boundary is closed as shown in Fig, 3-9, then the
transport due to advection and dispersion from grid M

to grid M + 1 is zero, and ch = 0. Now the resulting equation

is:
+ =
a P *tbrP =4 '(3.67)
Taking the general relation developed in Eg. ({(3.64)
and letting ¢ = 0 results in E = 0. Therefore, for
m m+l
this closed right hand boundary
Pm = Qm+1 . (3.68)
and
qm+1 = 0.0 | {3.69)

To account for open boundaries the appropriate E
value is set equal to zero and the Q value set equal to
the mass density at the open boundary, For an open left-

hand boundary:
-92-
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m+1 m=-1
| (3.70)
Eps1 = 00 .
Therefore:
Pm = Qm+]. = Pm—l (3.71)
Por an open right-hand boundary:
Qm+l = Pm+l ' (3.72)
Em+l = 0.0
Therefore:
Pm - Qm+l = Pm+1 (3.73)

With these basic recursion relations developed, any
combination of open and closed boundaries may be achieved,
The solﬁtion approach, after deciding the boundary con~-
ditions, is to calculate the E 2nd Q value§ in ascending
order, and then use Eq. (3.66) in descending order to
Icompute the mass densities, Table 3-1 presents the various
boundary céses that may be encountered and the equations

used to find their solutions.
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CLOSED-OPEN BOUNDARTES

[crrD PETERMINATION | DETERMINATION
{rocarron|  cowprrrows bF E BY EQ.  |OF Q BY Q.
/7/) CLOSED BOUNDARY
M BETWEEN M-1 AND M (3.62) (3.61)
et )
M+ 2
M+ 3 GENERAL MID-FIELD (3.64) (3.65)
M+ 4
M+ 5
¥ OPEN BOUNLCARY REFE- ,
) TWEEN M+5% AND v+6 0 (3'72)
CLOSED-CLOSED BOUNDARIES
[GRID DETERAINATION | DETERAINATION
LOCATION|  CONDITIONS bF E BY EQ.  |or Q BY 0.
// /] {crosep BOUNDARY
M BETWEEN M—1 AND M (3.62) (3.61)
M+ 1
M+ 2
e 3 GENERAL MID-FIELD (3.64) (3.65)
M+ 4
M+ 5 | ~10SED BOUNDARY BE- ,
/7 /] | TWEEN M+5 AND M+6 0 (3.68)
//// - crosep % - OPEN
BOUNDARY BOUNDARY

TABLE 3-1 BOUNDARY CONDITION SQLUTION ALGDRITHMS
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OPEN-CLOSED BOUNDARIES

GRID DETERMINATION | DETERMINATIO
TOCATION CONDITIONS OF E BY EQ, OF Q BY EQ.
* OPEN BOUNDARY
M BETWEEN M-1 AND M 0 (3.70)
+ 1
4 2
T3 GENERAL MID-FIELD (3.64) (3.65)
+ 4
' |M + 5 | CLOSED BOUNDARY BE-
/777 TITEN M+5 AND M+6 0 {3.68)
OPEN-OPEN BOUNDARTES
féRID DETERMINATION | DETERMINATION
LOCATION CONDITIONS OF E 3Y Q. CF Q BY 9.
* OPEN BOUNDARY
M BETWEEN M-1 AND M 0 (3.70)
M+ 1
M+ 2
+ 3 GENERAL MID-FIELD (3.64) {3.65)
M+ 4
M+ 5 OPEN BOUNDARY BE-
* TWEEN M+5 and M+6 0 (3.72)

TABLE 3-1 (CONT'D)

- T-

BOUNDARY CONDITION SOLUTION ALGORITHMS



@nothér approach that can be used to determine the open
boundary conditions is to calculate the concentration
from values extrapolated from the computational field
during the ocutflow and using some preset concentration
during inflow across the boundary. Normally an ap-
.proximation of this nature for ocutflows can be made

by simply regarding the convective outflows based on the

arguments in Chapter 2,

fbc'rmsrow QOF FINITE-DIFFERENCE MODEL TO TNCLUDE REACTIONS

As indicated previously the generalizad source and
sink term of the mass-balance equation, Egs. (2.2%) or
(2.27a) can be employed to simulate a reaction mechanism
for some wgter quality parameter or system of parameters.
To present this extension of the basic finite-difference
model for the mass-balance eqﬁation, the non-dimensional
model will be empleyed, due to its general applicability,
. ..—.and the structural development as presented by Leenderste
(24). , -

The generalized source-sink term as ncted in Eq. (2.27a)
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can be divided into a source (sink) vector S and a

reaction matrix (K], or in equation form:

= T + S
BHTS BHT K] P HTBS (3.74)

where P now becomes a mass concentration vector con-
taining constituents and HT is the instantaneous water
" depth as previously noted.

In its general form this scheme allows for
nonlinéar transports of constituents., Decay rates de-
pendent on any particular species concentration and coup-
ling between individual species can all be handled via
this reaction matrix scheme.

For example, consider modeling of éotal coliform
bacteria for three independent groups of sources. The
reaction matrix for this model and the mass concentration

vector then becomes:

" g B
K, .© o | P

[K]= O ¥; © P=|R S=0 (3.75)
o] 0 K!S F%
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. where

) a -t irst ad
Kll,K22, nd K33 he first order decay
constants
P. P and P - the concentration of coliform
1, 2, 3

- bacteria for the first, second,

and third source groups respectively.

An example of a two-stage non-conservative reaction
model éan be shown with the biochemical oxygen demand
(B.0.D.) and dissolved oxygen (D.0.} interaction in
a fluid. Discharges of organic waste frem municipal and
industrial outfalls are decomposed by bacteria in the
surrounding water column, These bacteria reguire oxygen
to perform this function which they take from the receiving
waters. The amount of oxygen utilized in the process is
referred té as the B.0.D. Replacement of the &issolved

_._oxygen occurs through reareation at the surface and in
certain cases throﬁghout the water body due to phatosynthesis
due to the growth of algae. Assuming that the B.0.D. can ,’
be modeled as a single first-order reaction coefficient and

~T{f photosynthesis is neglected then the reaction matrix [K]

-99-



and the mass concentration vector P can be written:

(k] =

:D KD
1 *a Csar

P = s =
P2 0 )
- (3.76)

where

KA - reareation coefficient of oxygen (1l/sec)

KD - first order decay cocefficient for B.0.D. (1l/sec.}

'Pl ~ DO concentration (mg/ %)

P, - BOD concentration ( mg/ 4 )

CSAT ~ Saturation concentration of oxygen (mg/ Ll )

Point sources of BOB and DO such as occur at sewage out-
falls or benthic demands are simulated by employing pulse in-

il
puts to the source vector, S, at appropriate spatial points.
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Generalization to higher-order reaction schemes
such as the nitrogen system follow a similar pattern
of development and will not be covered in this work.

Following the work of Leenderste (24) on a two-
dimensional vertically-averaged water quality model, a
finite-difference approximation for the reaction scheme
can be developed. 1In this presentation the results of
. his work will simply be altered to apply to the model
development employed and the interested reader is re-
ferred to Reference (24). The notational scheme follows
that previously used to present the finite—differénce
approximation to the mass balance equation. Then £f6r the
first-half time step, going from time level I to time

level §+1/2 we find:

n = =
BH,S =B (H +§) s =

e~ 7

= e = =
& + (R +
f_ B (R +F+) Ky By X + (H §) k., P B
:‘al

Jmax

_ ‘
for which indicates an averaging c¢ver the time

nlevelsQAt and ( ,2 + 1/2) At.
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o i=1
o -
i .
1 14i%j max
o i = § max
LI
1 1£3i <j max

j max - maximum number of constituents

and for the second-half step, going from time levellﬂ+ 1/2

to time level Q+-l results in:
=t

k—3 = -

BH S = + - - +

H, %B F +§) g Py

'th. iml..'u .
T H+§) K, PF Z (E + §':_) Ky %5 R4
yrov ’
+8 (H +§) s, : (3.78)

It is observed now that the constituent concentrations
of the previous finite-difference approximation for the
mass balance equation now become generalized to Pi where 1
represents a specific element of the mass concentration
vector,

The numerical computational scheme for the reaction

matrix is performed by 2 sequential use of forward and
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backward information as shown by Egqs. (3.77) and (3.78).
For example, if'jmax constituents a¥e transported in

the fluid for constituent i information in the reaction
terms at time level B+ 1/2 is used for all constituents
for which a sequence number j is smaller than i. For

all constituents which have a sequence number larger than

i, information at time level § is employed. The con-

stituents in this step are computed in ascending order
from i = 1 to i = jmax'

During the second-half step from time level ¥ + 1/2
to time level 8+ 1 the constituents,are computed in descend~
ing order, i = jmax to i = 1, Information on time level
2 + 1/2 is employed for all constituents having'a sequenca-
number smaller than i and values on the time level {+ 1,
are used for all constituents with a number larger than i,
The preceeding procedure centers the reaction matrix infor-

mation over the time interval { to Q+-1, whereas the terms

. .th .
involving the i constituent are taken centered over each

half time step. : T
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MASS BALANCE CHECK

An important part of any tfansport cémputational
model is to assure that the mass in the system remains
conserved for any conservative substance. This pro-
cedure assures that the finite-difference equations re-
presenting the partial differential equations are cor-
rectly formulated and that the boundary conditions have
been properly posed.

In fundamental terms the mass balance for the com-

putational model becomes:

Input of substance Output of substance Sources
due to dispersion - due to dispersion + of

and advection and advection . substance
- Sinks of

= total mass in the field
substance

This relation should hold for the time domain of the

computation.

In addition to conserving mass over each time step,

the computational scheme must show that cumulative error in th
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mass balance must also stay within acceptable limits,
for large fields (16 X 50) to + 1 %. Also if a constant
field concentration is set in the computational grids and
the same value is used for the boundary conditions then
for mass to be conserved in each grid the concentration of
that grid cannot change with time as the model is run,

For both the dimensionless z axis model and the dimen-~
. sional model of the finite-difference equations, numerical
modeling experiments show that mass is conserﬁed to with-
in + ,15 % cumulative mass error for a 16 X 50 grid system
with initial field concentration of 4,0 mg/% and a typical
conservative tidal velocity field, Program runs consist-
ing of over a thousand time stepé indicate that the con-
centration of each grid square remain unchanged., With these
conditions satisfied it has been verified that the model
and boundary conditions have been correctly approximated in
regards'to conservation of constituent mass.

If however, the values of dispersion become excessively
large in either model, a loss of ﬁass will occur near com-

plicated geometry or boundary conditions, These problems
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‘can be overcome by suitably altering the dis-
persion in these areas or 1ocally‘smoothing the

geometrical representation of the estuary at- that

particular point.
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CHAPTER 4

EFFECTS OF COMPUTATIONAL MODEL APPROXT

|
r
DISSIPATIVE AND DISPERSIVE ASPECTS \//

When a properly désigned computﬁtional method
using finite-difference approximations of partial
differential equations is used, a decrease in grid
size will cause the numerical and analytical solutions
of the differential equations to converge. Therefore,
before precceeding with the solution to any such set of
equations an analysis or analytical determination of the
computational effects of grid discreteness should be
performéd on.the proposed finite-difference model, This
however, is often not a convenient approach to use on the
full set of eguations due to limitations in computer size,
Imemmry and speed, .
To overcome these difficulties an analysis can bhe

performed on 2 simpler but similar eguation. This pro-~

cedure will be used in the following discussion having
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been originally outlined by Leenderste (6}.
At any instant in time, the spatial variation
of mass density in the area of cémputation can be c¢on-
sidered to consist of a superposition of Fourier series
with differing spatial frequencies. The computational
effects of importance are dissipative and dispersive.
By dissipative it is meant that the components of the
" Pourier series decay without any physical reason, whereas
dispersive refers to the difference in propagation speed
of components in the computational model and those in the
analytical or prototype solution,
These effacts, dispersive and dissipative, are
therefore to be avoided in a computatioﬁal model since we
would be unable to separate_physical processes such as
diffusion, decay of waste components, etc. from computaticnal
effects. This difference would also result in a mass-
-transport modél which would be incapable of conserving mass.
mo study these dispersive and dissipative aspects a
_qu-gimepsional mass tranqu;t equation with constant ve-
locity, estuary width, and dispersion coefficients will

be ;.tsed.w Thé'eqﬁation has the form:
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2
dp 3P 3 p
ot ox X 3 2

= 0 | (4.1)
Using a multioperation scheme for this equation

similar to that used for the two~-dimensional scheme in

chapter 3, the following equations are obtained:

- 4 1 1+ g+
_ At - -
Pm Pm * 248x w [ M)Pm +1 Zoch + (- Pm—l ]
At 241 L+ 1+
-p =5 (e -2 +P ,)=0 (4.2)
(4 x)
and-
b 04 At " {41 14 L+t
Pm-Pm +24xu [{1 +«} Pm+l-2wpm+ (1- o)} Pm-].]_
A {41 Y I
-D == [®B, -2 +P ,)=0 (4.3)
(Aax)

where the following notation has been employed

2
P = P (mAx, fa t)
m
Ax = grid size for x spatial direction

At = time step size
« = <=1,0,1 (indicating weighting factors i.e. backward,

central, and forward difference schemes).
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The soluticon of the finite difference equations
can be expressed by a Fourier series, For this eg-
vation then:

Pix,t) =_2_.. P*¥ exp. [ 1 (g .x +w . t}] (4.4)
3 ) J ]

where

W =  frequency

q
]

wave number

j = 132,33--- Q0

P*, = complex amplitude

Now since the equation is linear, only one term of
Eq. (4.4) needs to be considered in the analysis. Sub-
stituting the first term of Eq. (4.4) into Eg. (4.2)

results in:

')
P* B+ 1 = P* / [ 1+ At i usin (CAx) -

n n Ax
2 At .2 TAx At 2 crAx
+ . -

Axfxus:.n ( 2 ) 4Dx(;;? sin 2 } ] (4.5)
or

* 0+ 1 A * 2

m = IPI‘I\ (4.6)
where:
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1

At
}\ = At . , 2 At , 2 ,6A% ——— 2 §4X
at . £4at ax 2 ax
1l 1+Ax i u sin (G‘Ax)i Axotu sin” ( 2)+ 4D&(Ax) sin  { 2)
| (4.7)
Using a similar procedure for Eg. (4.3) :
2+ 2 £+ | .
* = *
P AR (4.8)
where
: 4D At
A, =145 g ain(rax)+ 285 i sin? (TBE) X 5,2 F8%,
2 Ax Ax 2 2 2
{ax)
(4.9)
Using Egs, (4.6) and {(4.8) :
+ 0+ 2 * .
P =g,(at,0) (4.10)
where:
T) =A A
ga(At, ) 172 (4.11).

ga( At,T ) is called the amplification matrix and since it
has only one element, its value is alsoc its eigenvalue (\).

The eignvalues of the amplification matrix provide
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important information on the computational scheme. For
stability, according to the Neumann condition (23), which
is explained in greater detail in the convergence and

stability section of this chapter, the criterion is

I)\I::’~.1+o ( At) (4.12)

The validity of this condition should hold for all
wave numbers T . Numerical experimentations show that this
"condition is always satisfied for space centered spatial

differences ( o = 0) but are not always satisfied for

off centered differences (&£= 1, - 1), Therefore, the
remainder of the analvsis will be completed for spatially
centered differences. Now one can see why cars was taken
in.the derivation of the finite-difference representation
to assure central spacing,

Employing the concept of the complex propagation
factor (6) the eignvalues can also be used to study the
dispersive and dissipative aspects of computational schemes,
This factor indicates one component of the constituent field
with a wavelength Lw. A wave will be designated as the

periodic variation of the constituent. To represent the

field, finite differences are used in spatial coordinates,
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~and the progress of the wave is followed over the wave-
length. Numerical computations however show changes of wave
amplitﬁde and propagation speed from those that actually
occur in the prototype as represented by the parabolic
partial differential equations,

To study these differences the propagation factor
will be employed, expressed as a function of(TQ or
Lw{ax’ which is the number of finite differences per
‘ wavelength, The propagation factor then is defined as
the complex ratio of the computed wave in amplitude and
phase to the prototype wave after an interval in which the
prototype wave nas traveled over its wavelenéth. _Therefore,
the modulus of the prbpagation factor is 2 measure ¢of the
amplitude decay during the computation, while the factor's
argument is a measure of the phase shift, Consequently, it

can be expressed as:

L ] '
w ., _exp [i (Wt +ax]]
T (Ax ‘ exp [ i {wt +0x]) (4.13)
where

W
and
2T
e
also
t
W = frequency of the computed wave

W = frequency of the prototype wave



_Figure (4 - 1 ) shows the difference between

the prototype and computed waves, The dissipative

and dispersive effects are easily noted. The mo-~

-dulus [ T ( Lw / %) ] is the ratio of the amplitudes
. of the computed wave to the physicai wave after time

qw / u and therefore represents the dissipative
effécts.of the computational procedure. This quan-

tity is noted as A" B" / A' B' in Fig. - 4 -~ 1.

To show the phase lag of the computaticnal scheme

a2 comparison is made between the wavelengths o

Hy

the
computed and physical waves, The ratio of these

two quantities, noted as B B" / B B! in Fig, 4 - 1,
is indicative of the dispersive effects of the com-

putational procedure,

For the first portion of this analysis the

behavior of the physical or prototype wave will be

considered,
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The general solution of Bg. (4.1) is:
P(x,t) = P* exp (i ( Tx + wt) ) (4.14)

Now introducing Eq. (4.13) into Eq. {4.1) results in:
) 2
W + T u-i on" =0 (4.15)

Oor rearranging:

W =G (-u + i0D) (4.16)

which is the relation between wave number and frequency
for the prototype wave,

Examining Eg. (4.16) it is found that if a periodic
spatial wave is used for the initial conditicn, that it
will decay with time, For a spatial wave of unit
amplitude and after a time aAt, the amplitude will decay as
exp ( - crznx at) .and the wave will have propagated a
digtance u At. This can be seen by substituting-Eq. (4.186)
into (4,14} then:

P(x,t) = P* exp (@i (x- uat + iG'DxAt)'

Now letting:

P* =1

x uldt
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then it follows that:

P(x,t) = exp ( - c‘sz At) (4.17)

However in a computatiocnal scheme a different re-
lation between frequency and wave number probably exists,
Introducing Eg. (4.13) into Eg. {4.2) and using the
spatially~centered difference scheme {o = 0) the following

is obtained:

iwt _ 1 - _
-1+iA+B—A,_ (4.18)

[ . .
where w, 1s the fregquency of the irplicit step com-

putational method and:

At .
A i u sin (FAx)
- At . 2 TAX
B =4D ==z sin ( > ) (4.19)
(ax)

During time interval At, the computed wave of this step

decays as the modulus of )\l:

1

l >‘II )y ) v (4.20)
V( l + B) 2

+ A
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The number of operations to be used at a time step At

for the physical wave to propagate over its wavelength is

L
W 27T
N= Atu - uwAto (4.21)

and the modulus of the propagation factor for this step

becomes:

-1/2
' Ly [(1 + 3)2 + Azl "
T | AxX) = (4.22)

exp ( - ¢2Dx At)

In addition the wave speed of the computational scheme
is different than that of the physical wave., T0 compute

the difference take the real part of Eq. (4.7) and obtain:

' )
L At) = - tan T+5 (4.23)

and the real part of Eg. (4.16) obtaining:

Re {w

Re (waAt) = Atud (4.24)

Thus the ratio of the computed to physical wave speeds

becomes: -1
) ’ tan A )
. R (w, &t) _ ((1+B) (4.25)
1 Re(wAt) Atu :

and the phase angle of the propagation factor is then:
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arg [T, (MW /ax) ] =2mW(R - 1) (4.26)
Proceeding with a similar line ¢f reasoning for

the second step using Eg. (4.3) and Eq. (4.9) results in:

\/(1 - B)2 + A2

A X) (4.27)

exp (- q-sz At)

and the computed wave speed to physical wave speed ratio

is:
-1 ( 2 ) . B
R2 = tan ( 1-B}; (4.28)
At T u
also:
Las
arg [T, Yiax) ] = 2T (R, - 1) (4.29)

In the multioperation scheme described in Egs. (4.2}
and (4.3), each operation is used n/2 times per time step
and hence the modulus of the propagation factor for the

multioperation scheme becomes:
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qéL

S A 2 2 2 2.
‘.T.( w/pey| MO AT /L Q)T r AL

[exp ( -G'ZIQ‘At) ]2
(4.30}

and the ratio of the computed to physical wave speed is:

R=2 (B +R,) | (4.31)

Taken separately the first step shows that it is
strongly dissipative, while the second step becomes un-
stable. However, in the multioperation scheme the method
proves to be stable and if appropiate values of B /lhx
are chosen, neither dispersive nor dissipative.

Figures 4-2, 4-3, 4-4, and 4-5 represent the results

' 2
ubt /Ax and Dx ot /(ax).

of a parametric study using
From these figures it is clearly evident that a decrease

in spatial grid size results in a convergence of the sol-
ution of the finite-difference equation to the partial
differential equation. This éhenomena works in different
ways, not only is the spatial discreteness improved but the
decreased grid size also permits a lowering of the dis-

persion coefficient which, as can be seen in Figs. 4-2

and 4-3, gives better results,
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In summary then the Figs. 4-2 through 4-5 shpw

L, /

1., Increasing of AX, grids per wavelength,
‘produce better agreement between the physical

and computational models.

I&:At uadt
2. Decreasing at a constant improves
2 Ax
(ax) :
results,
D At
3. 1Increasing of u Lt at constant 5
' (ax)

improves results,

4. 1In general at least 10 grid spaces per wavelength

must be used for an adeguate solution.

STABILITY AMNALYSIS

In order to better understand of stability

for this particular problem the Von A:umann method will be
employed again, but in a slightly different @anner to show
that this finite~difference approximation to the mass
transport equation in two dimensions (x,z) is always stable,
It must be remembered however, that only wheg it is ghown

" " that the solution is also convergent and satisfies the
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diésipative and dispersive requirements is the solution
algorithm using these finite-difference approximations

a fruitfpl scheme, The following presentation is similar
to Mitchell's approach for two-dimensional stability an-

alysis. For a definition of stability assume that:

L
Pm n theoretical solution of the finite-difference
¥
equation,
and
~ . . .
Pm n numerical solution of the finite-difference
]
equation,
where
: 2
P =P (mAx, naAz, XAt)
m,n

Taking the difference of these two quantities we obtain:

m,n m,n m,n (4.32)
Now for stability to exist, zm,n must remain bounded as J A
increases, while At remains fixed for all m and n.
The Von Neumann method of analysis claims that a
harmonic decomposition can be made of the error Z at

discrete grid points at a given time level, leading to the

error function
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iB-x

E(x) =2 A e (4.32a)
3
‘where in general the frequency {6:]) and j are arbitrary.
For an analysis it is necessary only to consider a single
i
term of Eq. (4.323), ¢ By where @%is any real number,
To investigate the error propagation as time increases then
it is necessary to find a solution of the finite-difference
equation which reduces to Ql ?bsx when t = 0, Let this
solution be
«.t (@x
3 )
¢ ¢ (4.33)
where o(s-.-.o{s( @s) is, in general, complex. Now the or-
iginal error component e:.@;x will not grow with time
provided that:
ol §
3
va
I_e | <t
(4.33a)

for all ots. This is Von Neumann's criteria for stability.

When using the Von Neumann method the following peints

should be remembered (28): o

1. The method which is based on the Fourier s'erie‘s

applies only if the coefficients of the linear
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differential equation are constant. No method

has been derived for non-constant coefficients

at present. If the difference equation has
variable coefficients the method can still be
applied locally and it might be expected that a
method will be stable if the Von Neumann conditicn
derived as though the coefficients are constant,
is satisfied at every point of the field. There
is much numerical evidence to support this con-
tention (28),

FPor two-level difference scﬁemes with cne dependent
variable and any number of indepenéent variables,
the Neumann condition is sufficient as well as
necessary for stability, Otherwise, the condition
is only necessary.

Boundary conditions are neglected by the Von
Neumann method, which applieslgtrictly only to

pure initial value problems with periodic initial -

daﬁa.
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Now taking the finite-difference eguation as found

i.n'_Eq. {3.20) we have:

r
11 f22
(1 -'ig S, (BD, ) O L5579, (BDZSZ) ]
r r 2+
1 2
t1+2308x(ma)1 (1+55 §, @) 1e
L
[1+5°S (BDS)][1+ S (8D, %,) ]
r r :
. 1 T2 7
[1-75 S, (UB)] [1 - 5 o, WB) 1B (3.20)

To begin the stability analysis it is assumed that at
a given instant Bo’ W, U, Dx and Dz are locally constant.
Therefore, we may group constants, letting

a= 11 2 p
‘ B

-_— X
2 Q
r
e .22 B
b = —5— B Dz
O
r
c E 1 UB
2 B, (4.34)
42 -2 B
-2 B
o
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Substituting Eq. (4.34) into Eq. (3.20) and using

Eq. (4.31) results in:

- 2 241
1-2a3, ] 01-b%, ’ M+ ] R +ad 1z =
2 2 ]
L Sx ] [1+b Sz ] 1-c S, - § ] Z
(4.35)
. L
© Now we can assume a solution form for 2
] xJat (gmax Ynsz
zm,n = ¢ e Z (4.36)

where 0(5, %s’ Xs are arbitrary constants, Remembering that
for a stable solution Eq. (4.33) is applicable, we may ex-
pand Eq. (4.35). Neglecting higher order terms, and

subsequently substituting Eg. (4.36), the result is:

28] s@smbx uY WAZ ?’;H LPS(MH)A)(

. ¢ (2 (1+2a+2b) + ¢

LY not g.H LB (me |) AX LY n BT
e (~a+%)+ S, & ¢ (-a ~%).

' LY (nn) &z
. i ,Q-Hz;. B axe f {n (-.b+-°l’2.) +

CH LY, (n-1) a2 |
g,sh-lc pomax Az gy
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0 (B.wmbdX (¥, nDZ b L, (ma)ax
?5 ¢ és ¢ (1- 2a~2b) + ?5 ¢ Gs
L¥snoz 2 i tm=-1)ax (Y, w81
¢ (a-%2) + i ¢ ¢ e (a+ C/2)
2 ipamax (¥ (ne1) AZ 1
+ S ¢ bs ¢ (b-dn) +§
(pym AX ¥ (n-1) 8T
¢ ¢ ’ ( b+ d/2)
(4.37)
where
« ot ]
¢ = ?s (4.38)
anﬁ now letting
(1 + 2a + 2b) = al
(-a + ¢/2) = a2
(-a - c/2) = a3l (4.39)
(-b + 4/2) = a4
(<b - d/2) = a5
(1-2a-2b) = a6

Then using the relations in Eq. (4.39) and dividing Eq.

| 2 (pymox (YynbZ
(4.37) by & ¢ e and rearranging we obtain:
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B3 BX _1 A BX Y8z -hez
{

gzas'- e ( a2) -¢ al) -¢ " (a4) - €  ( as)
3 (Bs DX ~ (fs X (¥4l - ¥sAT
al + ¢ (a2) + ¢ (a3) +¢ (ad) + ¢ (a5)
(4.40)

To separate €s into a real and an imaginary portion, the

exponential terms are expanded to obtain:

AA - iAB
g’s “ BB + iBC (4.41)

AR = ag-a2 cos(&ax) - a3 cos(8, 6x)~ a4 cos(Y, 4z)
~ a5 cos(Ysaz)

AB = a2 sin (g,ax)- a3 sinm_‘dx)-!- a4 sin (3‘5623-
as sin()‘st&z) .

BB = al + a2 cos(%ax)-ﬁ- a, cos (@sﬁx)+ ad cos(’f,ﬂz)

+ a5 COS(Xséz)
BC = a2 ‘sin(@sﬁ x)- a3 sin(@;ab x)+ a4 sin (¥ 8z)
- a5 sin(¥snz) '

(4.42)

or in an alternate form:
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§ _ {an) (BB) - (aAB) (BC) _ ; (BB) (AB)-“‘ (An) (BC)
$ 82 + (8c)? ®8)2 + (80’

(4.43)

Prom previous results the solution to the finite-difference

scheme is stable if 1?;':&.1. Numerical computations of

By, (4.43) for arbitrary values of @5 and X; show that

the scheme is unconditionally stable. Results of the com-
- putations are shown in Figs, 4-6 and 4-7 and show similar

behavior as those outlined in Figs. 4-2 through 4-5.

CONVERGENCE

As was previously mentioned, for a finite-difference
approximation to be valid not only has the solution to be
stable but i£ also must be convergent. By convergent we
mean that the theoretical solution of the differential and
difference equations at a fixed point P (x,z,t), tends to

zero uniformly as the net or grid size is refined in such

a way that Ax, 4z, At ~» 0 and m,n,{ —» ©
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‘with méx, ndz, and fat remaihing fixed, The
fixed point P(x,z,t) is anywhere within the solution
region.

From the analysis carried out in the section on
digpersive and dissipative aspects it can be seen that
the solution of the difference eguations converges to
the theoretical solution of the differential equation,
Further evidence that convergence is cobtained is pro-

vided by the modeling efforts of Leenderste(6),

NUMERICAL RAMPING

The dispersion term in the parabolic equation for

mass transport acts as a2 numerical damping term, since it

helps to eliminate oscillations of a finite-difference

solution about the true convergent solution, Such os-

cillations are fregquently found in computational schemes

(23); Perkins (30) has also shown similar results for

attaining of boih a stable and convergent solution. Figure
- —4-3 clearly displays this effect for the ‘computational

scheme which is being developed.
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. DISCONTINUITES

As has been mentioned previously finite-difference
methods of the type developed in approximating the mass
transport equation are well suited to slowly changing
variables. In most estuarine problems, however, the
sources of pollutant enter the model at discrete points.
this is unfortunate from a computational view point since
a finife- difference equation assumes immediate and complete
mixing of the pollutant in a particular grid and thus a
local disturbance is generated in the solution.

Just upstream of the discharge, 2 discontinuity in
mass density exists. The computational scheme is unable to
represent this discontinuity adequately since the Fourier
saries decomposition of this jump leads to many very short
waves which cannot be resolved into the grid net&ork and
become aggregated into waves with a few parts per wavelength.
These waves, because of dispersive effects, undere;timate
the influence of dispersion and lead to incorrecﬁ repre-
sentations of the sclution in the surrounding areas.

To overcome this problem artifical dispersion at the
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location of discontinuities is often used (23}, thus

locally émoothing the solution, A convenient and ex-

‘pedient manner to accomplish this is by upstream flux

differencing, which usually increases dispersion just

enough to counter the generation of a spatial disturbance,
For example, if a source is located at the point

m,n and the velocity U ( (m + %-)Ax, n{Az,QAt) 0,

then at_ the location (m + % )ax, naz,dat the mass

flux flowing toward the point of discharge is computed

to be UP where P is taken "upstream" at the location

(m+l)Ax? n Az,fAt rather than being an averagad value,

§x. This technique is mcre graphically presented in

Table 4-1. Using this mass flux in the advective ﬁrans-

pox;t mAxX, nAz, (li— %" At according to Leenderste(6)

- achieves conservation of mass of the substance and elim;

inates the problem. Numerical experiments with the two

models confirm this mass conservation., With this approach

the influence of the source at locaticn m,n is not felt

upstream other than through the contribution of the dis-

persion term. If, however, the normal finite-difference
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POINT SOURCE

LOAD
VELOCITY
VECTOR
—_—
0 X
P
m-1,n um-1/2,n m,n uru+l/2,n Pm+1,n
CONDITICON: um*l/27'0, SOURCE LOCATED AT POINT M, GOING
FROM TIME LEVEL JZ+% to L+ 1.
OPERATION: AT POINT M
WEIGHTING FACTORS
TERM P 1Y 1 P um_l_ P u L Posl o o~
;0 m 2,n m,n 2,.n m,n mv, 20T n
UPSTREAM FLUX
DIFFERENCING 2 Q 1 1
NORMAL
TECHNIQUZ . 1 1 1 1
OPERATION: AT POINT M-1 WEIGHTING FACTORS
TERM . P 2 uw 3 P 1 u 3 P 1 u 1 P u 1
m-2,n m-3  m-1,n m-7,0 m-l,n ' m~3  wm,n m-7
UPSTREAM FLUX | .
DIFFERENCING 1 -1 0 2
NORMAL .
TECHNIQUE 1 1 1 1
OPERATION: AT POINT M+l, NORMAL TECHNIQUE

TABLE 4-1 VARIATION IN COMPUTATIONAL SCHEME FOR POINT LOADING
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0 X

Pe-1,n “m-1/2,n

CONDITION: um+1/2

POINT SOURCE

LOAD
-t
VELOCITY
VECTOR
0 X 0
Pm,n ‘ umﬂ-l/2,n Pm-i-l,n

0, SOURCE LOCATED AT POINT M GOING FROM

TIME LEVEL 2+ 1/2 to 2+ 1
OPERATION: AT POINT M

WEIGHTING FACTORS

TERM P u 1 P u 1l P u .1 P u 1
m~-l,n m-7,n m,n m~3,n m,n mts m+l,n m+T,n
2 ’ 2.,n 2
UPSTREAM FLUX _
DIFFERENCING 1 1 0 2
NORMAL }
TECENIQUZ 1 1 1 1

OPERATION: AT POINT M + 1

WEIGHTING FACTORS

TERM P

u 1 P u 1 P u P u
wfp— +
m,n mds m+l,n m > n m+l,n m+s n m+2,n m

UPSTREAM FLUX

DIFFERENCING 2 0 1 ' 1
NORMAL _ .
TECHNIQUE 1 1 1 1

OPERATION: AT POINT M-1, NORMAL TECHNIQUE

TABLE 4-1 (CONT'D)

VARIATION IN COMPUTATIONAL SCHEME FOR
POINT LOADING
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equation is employed at the local discontinuity, the
ﬁpstream mass density generally becomes severly suppressed
" and subsequentially leads to a dampened spatial oscilla-
tion.

In two-dimensional flows, the exac£ location of the
discharge is not always known, and a highly complicated
line of discontinuities can appear in the spatial field.
Diﬁferent approaches can be tried to remedy .this effect.
First'we can neglect the effect altogether and interpret
the computational model results accordingly, or secondly try
to adjust the dispersion values, as considered previously.
To accomplish this second method, results c¢f numerical
work on shock wave analysis by Lax and Wendroff as presen-
téd by Ritchmyer and Morton {23) are employed.

An added artifical disp;rsicn, in this method, is
employed Qhenever the mass density values are significantly
different from surrounding values and no artifical dis-
persion is used if the mass density values are approximately
equal to near-field values, For example, the dispersion |

terms take the form
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(4.44)
where ey = constant
and similarly for Dm_l/z,n and Dm,n-l/2

The addition of Eg. (4.44) to the computational
scheme adds considerably to the computational time and

the method of ignoring the complicated line discontinuity

is usuvally chosen,

INTERMEDTATE BOUNDARY APPROXTIMATIONS

1
+—
The intermediate value P 2 introduced into the

finite difference computational scheme outlined is not
necessarily an approximation to the solution at any value
*

..-0f the time, despite the fact that we have referred to is

as "the first-half of the time step" and in similar terms.
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As a result, the boundary values at the intermediate level
must be obtained, if possible, in terms of the boundary
values at t= Qat and t = (2+ 1) At':. Mitchell {28)
howeverrstates that as long as the boundary conditions

do not display rapid changes with time and a lower ac-
curacy method is used, that a simple averaging of the
boundary conditions at the two time levels should be
adeguate, For the case of water quality parameters these
assumptions are usually justified and the above inter-

mediate boundary approximations are used.

COMMENTS ON HIGETR ORDER SCHEVES

In mathematical modeling, the spatial representaticn
or discreteness is often a limiting factor, since large
arrays must be kept in active computer memory. The re-
presentation of hydrographic data and the finite-difference
approximations which are used give a rough approximation.
Consequently higher order approximations in the spatial
dimensions seldom provide a noticeable increase in accﬁracy.
A better approach is to refine the size of the spatial grid

spacing.,
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CHAPTER 5

-

COMPUTER MODELING VERIFICATION AND APPLICATION

CHOICE OF MODEL

It has been indicated that both a dimensional and
a non-dimensional z-axis model have been developed for the
laterally-averaged, mass-transport equation. An obvious
question that arises is which model to use. To deter-
mine the appropriate choice one must fi?st realize
the constraints on each medel. The dimensiqnal z-axis
model has a fixed surface - there can be no variation of
th; surface with time, as is found in all tidal situations -
ghile the non-dimensional z-axis model can account for
tidal height variations. Therefore, in general, when sig-
nificant tidal height variations are encountered the non-
dimensional z-axis model should be employed while for
negligible tidal heiéht variation the dimensional z-
axis model may be employed. 3nother factor to consider
is the vertical representation of the estuarf, The non-

dimensional model can easily handle a wide range in depths
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whereas the dimensional model is fixed by a given grid
size, Since the nondimensional model is the more widely
applicable it is the one which h;s been used for the
majority of the modeling verification effort. The di-
mensional model however has been verified to conserve
mass and can therefore be employed as an engineering tool

even though it has not been used extensively in this

“work,

APPLYCABILITY OF THE PROPOSED MODEL

The tﬁo-dimensional, laterally—intégrated, mass-transport
model is valid only when the assumption of small lateral
variations in mass density across any section in the es-
tuary is tfue. For Narragansett Bay this assumption is a
good approximétion in the upper half of the Bay where water
qguality parameters or more correctly D.O, and B.0.D,, dis-
play their largest variations.

.Other assumptions made are that the dispersion co-

efficients can be adeguately represented by empirical re~
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L4

lations. PFor this water quality model a modified

Elder's approximation for longitudinal dispersion and
Pritchard's model for vertical dispersion have been

used, Of these two assumptions regarding the dispersive
transport the second, Pritchard's , poses the most severe
assumption since the whole vertical structure is deter-
mined by this formulation because the vertical velocities

have been assumed to be negligible.

GRID SELCCTION FOR NARRAGANSETT BAY

The selection of the grid size and the dimensions
of the subsequent computational arrays are governed by
several parameters, These variables include accuracy of
solution desired, availabie computer storage space, pro-
gram turn-around-time, and expense of computer time. For
example, if a large grid size‘is chosen, computer time
and storage is minimized, however the loss in accuracy of
yrepresentation of the actnal estuary may cause the results

to be numerically correct for the equations but fruitless
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in determining any of the significant variations
in water quality parameters in the area. On the other
hand if the grid size is decreased, computations must
be made on more points which increase the computational
effort by a factor inversely proportional to the square of
the grid size (25)., 1In addition, the time step size has
to be decreased, since the dispersive properties of the
computational method are related to the ratio of the time
step to the spatial grid size and thus the computational
effort becomes inversely proportional té the third power
of the grid size. Now a better rapresentation of the
geographical area is obtained but the limit; of computer
storage are soon reached, No mention has been made of the
expense and turn-around-time of computer operations but these
also become important due to the size of computer storage
involved, At best, the problem of determining the grid
size is complicated and should be weighted very carefully
in determining the modeling effort to be expanded.

TO ve?ify the mass-transport model, Narragansett Bay
as shown in Fig, 5-1 was chosen, The area of interest in-

cluded a region from Rhode Island Sound to the lower reaches
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BCUNDARY CCNOITION GRID
ELEMENTS FOR TIDAL MOCEL

FIG. 5-1 LONGITUDINAL ESTUARY SECTION NUMBER LOCATIONS
FOR NARRAGANSETT BAY



" of the Seekonk River in Providence. Neither the Sakonnet
River nor Mt. BHope Baylwas included in this initial
.moéeling program.

In order to achieve good spatial definitioﬁ, 14
vertical grids for the non-dimensional z;axis model were
chosen with 46 longitudinal grids of 3038 ft or 1/2
nautical mile (nm) along the estuary-x*axis. with this
combination the storage arrays for various water quality
parameters were 16 X 50 leading to a total computer
storage requirement of approximately 256 K bytes for

the entire mass transport program.

GEOGRAPHICAL INPUT DATA

A good representation of the area under study from
a geographical or bathymetric viewpoint is the first im-
portant step in any modeling effort. To obtain information
on the average section depths and widths for Narragansett
Bay Chart # 353 of the Coast and Gecdetic Sﬁrvey was em-

‘pioyed, Fig. 5-2.7 'In gathering this data however, the basic
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assumption of the model must be remembered - laterally
integrated. This assumption can also involve averages
over depths as well as cross sections. A typical ex-

ample of this situation is observed at sections across

the lower bay over the East and West Passages, Bathy-
metric data show large differences in the average depths
of the two passages, To model the entire cross section
then an average depth of the two passages is chosen and

a new bottom profile developed. This approximation is
used since dispersive relations for the model are directly
related to the section depths, and since no cross sectional
variations in deoths occur in the model, the best estimate
of the depth of that cross section for ‘purposes of cal-
culating a reasonable dispersive transport coefficiant
should be used. Fortunately, in Narragansett Bay, where
this averaging process must be extensively employed, at
the lower bay region, is the area in which water quality
parameter variations are particularly small. However,

for other estuaries this may not.occur and the results of

the model must be interpreted accordingly.
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WATER QUALITY INPUT DATA AND BOUNDARY CONDITIONS

Goqd initial.value arrays of the water quality
variables help significantly reduce the computatiocnal
time required to achieve a pseudo steady-state approxi-
mation to the water quality variables under investigation,
To achieve this goal, data from the actual estuary can
bé used as initial conditions for the water qualitf model.
In this light, all available D.0. and B.0.D, for Narragan—l
sett Bay were collected, laterally-averaged for each section
and used as input conditions for the . initial model run (8,
31, 32, 33).

For subsequent runs the output of the water quality
model included a set of punched cards of the final field
concentration which then coﬁld be employed as inputs for
the next program simulation run.

The data for open boundary conditions for D.0O. and
B.0.D. were obtained from existing field data (8,3;,32,33)
and were held constant over the entire program running
time. Indications have been made as to how values of mass
densities can be extrapolated from within the field but were
-not used in the model since the simulation effort has

initially been on long term variations due to a lack of
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good accurate short term data. By long term it is

meant that data over a particular season is being used.

HYDRODYNAMICS OF BAY

Since the mass-transport model as developed has no
provisions for computing its own velocity fields these
daté, as a function of time, had to be found from another
model or experimental data.

Based on the original tidal model, developed by
Leenderste (@) a Narragansett Bay circulation and tidal
hydraulics model was completed and verified (34).. A
grid size of 1/2 nm squares was chosen as shown in Fig,

5-1 for this effort, However, the assumptions of this

model were that the momentum and continuity equations

are vertically integrated and therefore the tidal vel-
6cities represent vertical averages over each section. By
simply averaging the u velocities (x direction) across each
section using a flow rate and dividing it by the cross sec-
tional area, one obtains a pseudo, one-dimensional vel-

ocity field in the

=153~



'x—direction. One can now assume that this is the
driving force for the two-dimensional, vertically-
structured water quality model being developed if the
cross sectional flows or lateral flows are small and
that the vertical velocities are negligible, For Nar-
ragansett Bay in the regions of greatest interest for
water quality parameters, the upper Bay, both these
assumptions are essentially true, The implications of
this approximation for the velocity field are that the
longitudinal advection and dispersion and the vertical
.dispersion are the primary mechanisms for constituent
transport. The area in which these apgreximations are
worst -~ in the lower bay - is where the water quality
parameters show the least variation,

Therefore to drive thé non-dimensional z-axis water
quality mddel, cross-sectional averaged tidal height and
tidal velocity, u , for each longitudinal section of the
Bay were generated by the tidal hydraulics model and
stored in computer memory. Thesé data were taken-by the
above water quality modei, forced to satisfy continuity

of water over each grid in the field and then used as the

velocity data for the model,
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Numerical results show that this procedure leads
to a fairly accurate representation of the velocity field,
even considering that it has been forced to conform to a
new grid system. A better approximation of course could
be obtained by completely developing the corresponding
non-dimensional z axis hydrodynamic model for the area.

The biggest drawback in employing this type of hyd-
raulics model is its poor representation of the Providence
River area, Since the hydrodynamics model attempts to
match such a large area with as few grids as possible it
was inevitable that areas with relatively small cross
sections as the Providence River would »e poorly modeled.

An idea of the amount of this deviation from actual estuary
geometry can be obtained by comparing the area modéled by

the hydraulics model with the actual estunary cross~sectional
area, Performing this operation shows that in the Providence
River this ratio has values as large as 4.5 while in the re-
mainder of the estuary the ratio falls between .85 and 1.2.
Also, when the velocity field is fﬁrced to obey a con-
tinuity equation, before being used in the mass-transport

equation, the small but yet all important net outward trans-

-155-



port dué to river inputs and land runoff is lost. To
counter this loss a source of inflow term was added to the
‘eontinuity equation.

A comparison of all velocity profiles determined
fram the hydraulics model, forced to cbey a continuity
equation with and without corrections for river inputs can
be seen in Fig. 5-3. It is noted that the agreement
between the continuity equation forced velocity profile and
-that supplied by simply obtaining the average u velocity
field for each section is remarkably good, The places of sig-
nificant deviation occur, as can be notad from Fig. 5-1,
when the actual estuary area being modeled displays sig-
nificant cross stream velocities. Observation of £he ad-
dition of the river inflows shown only slight variation
from the forced continuity equation results and only in the
Providence River area are the values noticeable where the
cross sectional areas are particularly small in comparison
to tidal model areas. Several runs were made-which tried
to correct the river inflows by using the tidal model cross

sectional area, actual estuary cross sectional area ratio in
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#n attempt to make the model more representativé of
actual conditions. This approach ho?ever proved fruit-
less since the magnitude and variability of these cor-
rection factors caused the solution to oscillate consider-
ably. Therefore the uncorrected river input continuity
equation is used as the tidal velocity input and the re-

sults interpreted accordingly.
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MODEIL VERIFICATION OF DISSOLVED OXYGEN-BICCHEMICAL

OXYGEN DEMAND SYSTEM

In order to verify the reaction schewe for the D.O.-
B.0.D. system the model with geometry for Narragansett Bay
" was run under a zero B,0,D, loading condition. It is
important to realize that this exercise does not imply
any final results of estuary cleanup time but merely demon-
stréteé the response of the model and the subsequent changes
in D,0.and B.0.D. concentrations,.

Using initial profiles of D.0. and B.0.D. obtained
from existing datz for the Bay (8,31,32,33) the model was
run for a period of about 24 days. All boundary conditions
were linearly extrapolated to their cleanup values o§er a
2 day period (i.e. B.0.D. concentration to 0.0 and D.O.
concentration to saturation value) and remained constant at
that level throughout the following days. Since the re-
areation process is particularly slow for large deep bodies
of water a value of thirty times the Dobkins-0'Connor (35) ’
reareation coefficient was chosen to accélerate the surface
reoxygenation phenomena. The decay coefficient was.also

éhOSen with similar reasoning in regards to the decay of
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B.0.D. with a value of .25 day '1_

Figures 5-4 and 5-5 display the vertically-averaged
profiles of D.0. and B.O.D. respectively, in four day
intervals beginning with the initiai conditions, where
the longitudinal estuary section numbers are equivalent
to the M values shown in Fig., 5-1. The decrease of
B.0.D. due to flushing and natural decay processes is
.readily demonstrated in Fig. 3-4. It is also to be
noted that the decay mcdel for B.0.D. is 2 first order
proces§ which is clearly demonstrated by the decreasing
difference between the B.0O.D. profiles as time progresses.
Simultaneous with the decrease of these 3.0.D. concen-
trations, the D.O. (Fig. 5-5) exhibits the expected in-
crease due to dispersion and'reareation. In the early
stages, between the initial profile and the levels at 12
days, however the vertically-averaged D.O, concentration
display levels below the initial. This phenomena can be
atﬁributed to the large loadings of B.0.D. during the first
few days, again due to the first order decay process. Anothéf
point of interest is the peak which occurs in the neighborhood
of estuary longitudinal section numbers 11, 12, 13 . Care-

ful observation of the grid sectioning in Fig. 5 -1
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shows that there is a factor of about 2 change in the
cross sectional area which leads to large velocity changes

and subsequent increases in the reareation coefficient.

MODEL EXPERIMENTS WITH THE D.O. - B.O.D, SYSTEM

In order to further verify that the coupled D.O. -
B.0.D, éystem has been correctly modeled and in addition
obtain information on how changes in the basic coef-
ficients "of reareation and B.0.D. decay affect overall
profiles, several computer runs were executed varying these
parameters, Figures 5-6 and 5-7 show thé D.0., and B.0.D,.
profiles, respectively, plotted against the estuary long-
itudinal section numbers, as defined in Fig. 5-1 for a
constant reafeation coefficient and variable B.0.D, decay
constants,

The reareation coefficient chosen was that developed
by O'Connor and Dobbins (35) and adjusted by a factor of
3 to obtain a fairly good approximation to general estu-
arine reareation processes for the area. The decay coef-.

ficients for B.0.D. were then chosen to represent both the
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high and low values for a typical estuary system. In

obtaining Figure 5-6 and 5-7 initidl estimates of D.O.

‘and B.O.D. profiles were selected and the computer model

of theroxygen system was begun with a typical sewage

loading distribution as ﬁhown in Table 5-1, and geometry

for Narragénsett Bay. These initial estimates do not

represent steady state values but are taken from 2 summation

of the available data. The largest load of pollutants

can readily be seen occuring at estuary longitudinal

section number 7. The depression on either side of this

large lcad, 3s ncted in Fig. 5-7, cén te ;ttributed to

a lack of adeguata dispersion where concentra£ion gradiencs

become increasingly large, In such circumstances in a

natural environment the dispersion coefficient is locally

increased to smooth out the discontinuity of concentration.

If left to continue on its present path for a period longer
fthan the two day simulation run shown, the concentration

on either side of the grid which is heavily loaded will
--—become negﬁtive - an unrealistic situation for an actual

estuary. However, of particular interest here is that

as the B.0.D, coefficient is raised from .075 «:Iay"1 to

.25 day_l there appears a significant decrease in the amount
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of B.O.D. present. This phenomena can be attributed to
the normal first-order decay process of B.0.D. Sub-
sequently, the D.0. profile shows a considerable decrease
with increase in B.0.D, decay coefficient which again
may be attributed to the first-order decay process drawing
on the available oxygen in the surrounding water column.
Using similar starting conditions as have been pre-
wviously noted - the D.0, - B,0.D. system model was again
run for Narragansett Bay with constant B.0.D, decay
coefficient of |1 clay-1 but variable reareation coefficient,
3. and 30. times the O!Connor-Dobbins (33} formulation,
Figures 5-8 and 5-3 present the results of these rums. It
can be seen from Fig. 5-8 that as the reareation coef-
ficient is increased more oxygen is forced into the water
mass., A peculiarity shown by Fig. 5-8 is the large amount
of oxygen added around estuary longitudinal grid section
number 3-4, this can be attributed to a change in depth
of the water column at that point of a factor of 3, Now
gsince the Dobbins-0O'Connor reareafion formulation is pro-

portional to g2

the reason for this large input is ex-
plained. 1In addition Fig, 5-9 shows that variations of |

reareation coefficient have essentially no effect on the
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B.0.D, prefile, This can be easily understood since
the D,0, - B,0.D. eguation coupling occcurs only through
- a B,0.D, decay term or, in other words, the D.0. has

no direct effect on the B.0Q.D. profile,

TEMPERATURE EFFECTS ON THE D.Q, - B.O.D. PROFILES

To simulate the effect of variation in water tem-
perature on the D,0, - B,0.D. profiles the non-dimensional
vertical axis computer model was run for two different

 water surface temperature levels ¢f 65 and 55° F which
were kept constant over the entire Bay until a quési
séeady—state was achieved. Figure 5-10 presents the com-
-parisonlof the D.0. and B.0.D., profiles for each case. Since
the effect of temperature is included only in the saturation
and reareation values of D.0, at the estuary surface one‘
would expect changes only to occur in the level of D.O.
in the water column. This indeed is the case as shown in
the figure for these vertically-averaged profiles,

L T LT VEgU

vertical éfofiles of D.0. show that the increase in
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oxygen saturation levels increases the D.0. levels
it all depths with little change in the overall vertical
A'stfucture. It is evident from viewing this simple
comparison that slight changes in water temperature have

drastic effects on the oxygen saturation and reareation

processes,

VERIFICATION OF NARRAGANSETT BAY D.O. - B.0O.D., PROFILE

In order to verify the nondimensional z axis com-
puter modeled D.O, - B.O,D. reaction scheme and both the
processes of reareation and B.0.D. decay, as well as
.péllutant point loading, the model was used to compute
the D.0O. - B.0.D. values for Narragansett Bay under typical
summer timé conditions, Using data published by the

Providence Journal Bulletin Companv (36) which was compiled

from the Northeastern area Environmental Protection Agency

and the Rhode Island Department of Public Health, a current
list of pollution scurces for the Bay was obtained., A
summary of the sewage loads that are deposited directly into

the'estuary is presented in Table 5-1 and the locations
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DIRECT POLLUTION SOQURCES FOR NARRAGANSETT BAY (36)

AS OF OCTOBER 1971

1

ESTUARY
LONGIT!
. ‘ SECTIO)
STATION POLLUTERS TO NUMBER
NO. NAME LOCATION RAW WATER (FIG,S-
PROVIDENCE SEWAGE PROVIDENCE 54000 14000 7
~ TREATMENT PLANT
2 NARRAGANSETT WARWICK 80 15 11
VILLAGE _
3 EAST GREENWICH E.GREENWICH 420 - 40 22
SEWAGE TREATMENT
PLANT
4 QUONSET-DAVISVILLE N.KINGSTON 2700 1100 31
NAVAL BASE
5 NAVY HOUSING DEV- WICKFORD 280 30 34
ELOPMENT
UNIVERSITY OF NARRAGANSETT 40 2 44
RHODE ISLAND
7 BLACKSTONE VALLEY E.PROVIDENCE 52200 42300 -
SEWER DISTRICT :
COMMISSION
8 EAST PROVIDINCE E.PROVIDENCE 5000 1000 8
SEWAGE TREATMENT :
PLANT
9 RHODE ISLAND LARE BARRINGTON 2160 2160 12
WORKS INC. :
10 WARREN SEWAGE WARREN 1900 1300 15
TREATMENT PLANT
11 BRISTOL SEWAGE BRISTOL 3900 2000 21
TREATMENT PLANT
12 PEARSON YACHT DIV~ PORTSMOUTH 40 4 25
ISION GRUMMAN
ALLIED INDUSTRIES
INC.
13 MELVILLE NAVAL PORTSMOUTH 181 161 29
FUEL DEPOT ~
14 RAYTHEON CO. PORTSMOUTH 164 15 29
15 NEWPORT SEWAGE NEWPORT 6700 6200 39
TREATMENT PLANT
16 JAMESTOWN SEWER JAMESTOWN 260 260 42
17 JAMESTOWY SEWER JAMESTOWN 30 30 42
18 FORT ADAMS NAVY NEWPORT 170 130 43

HOUSING COMPLEX

TABLE 5-1 SOURCES OF SEWAGE POLLUTION PGR NARRAGANSETT BAY -

oCT, 1971
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) '
FIG. 5-11 LOCATION OF SEWAGE POLLUTION SOURCES AS LISTED
IN TABLE 5-1 '



arehsuitably noted in Fig. 5-11. The table lists both
normal (to river) and overflow (raw) loading conditions
characteristic of dry and rainy weather conditions res-
pectively. These pollutant load levels were then taken to
represent the simple carbonaceous loads and were multi-
plied by the ratio of the model estuary cross-sectional
area to the actual estuary cross-sectional area in an
attempt to correct loadings to fit the tidal model gecm-
etry. The reasons for these corrections in geometry has
been previously discussed in the section-of this chapter
concerning the estuarine hydrodynamics.,

' The simulation of the tidal movements has teen pre-
viously outlined, in which a net ocutward flow has been
added to the laterally averaged longitudinal velocity
components from the two-dimensional vertically-avéraged tidal
hydraulics model. The results of this procedure seem
adequate to complete the modeling effort at present.

Determination of a preliminary characteristic value

for the B.0.D. decay coefficient was performed by the autho;
using samples acquired from the Providence River, Employing

a log daily difference approach with the 1,3,5 and 7 day

B.O.D. values the decay coefficient was found to be in the
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range between .065 day“1 and ,25 day_l. Therefore, as
a preliminary estimate the B,0.D. decay coefficient was
.-approximated as ,08 day-l over the entire Bay area,
Further work will undoubtedly be necessary to determine
more accurate values for this coefficijient,

The reareation cogfficient formulation for the model
use was taken from the work of Krenkel and Thackston (37}
and modified to obtain an average value of about .25 day_l.
Conéiderable difficulty was encountered in application
of this classical reareation formulation, since like
all other presently available empirical formulation
techniques of reareation it incorporates hoth the actual
molecular surface transport of oxygen as well as a dis-
persion coefficient for the entire water column which
characterizes the movement of oxygen to the lower depths,
However, to overcome this problem, instead of using the
difference between the surface saturation value of D.O.
and the value in the grid at the surface as the driving
potential for reareaticn, the difference between the sat-
uration level and the average value of D.0. for the whole

column of water was employed. This technique appears to

have substantially solved the problem and provided reasonable
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reareation rates for the Bay,.

| The dispersion coefficients chosen for the study were a
: moﬁified version of Elder's formulation with values of
approximately 45 ftz/ sec for longitudinal dispersion and
Pritchard's density-corrected vertical dispersion coef-
ficient with values ranging between ,0001 ftz/sec. and

.02 ftg/sec. depending on the gradients in the salinity
field, which was employed to define the density structure

of the Bay.

To help summarize the input for the D.0. -~ B.0.D.
simulation of Narragansett Bay Takble 35-2 presents the
values employad in the computer meodeling effort. Indicat-
ions have also been made in this table as to.the location
of the data or formulation scheme,

To compare the results of the computer model to
actual Bay conditions data for both B.O.D. and D.0O. were
collected from the Rhode Island Department of Public Health
(31), the Army Corps. of Engineers Hurricane Barrier
Study (8), and the University of Rhode Island's Bay Watch
water sampling program (32), The values were then averaged
‘over the summer season for each sampling program and

station and then averaged again across each longitudinal
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MODEL DATA INPUT

RANGE OR VALUE

COMMENTS

TIDAL VELOCITIES
AND HEIGHTS

LONGITUDINAL
DISPERSION
COEFFICIENT

VERTICAL
DISPERSION
COEFFICIENT

TEMPERATURE

B,0.D. DECAY KD

REAREATION KA

45 ftz/sec

,0001-.01£t%/sec.

65°F

.08 day-

.25 day

DETERMINED BY

FORCING ONE DIMENSIONAL
CONTINUITY ON TIDAL
MODEL (34) OUTPUT WITH
NET OUTWARD FLOW.

MODIFIED ELDER
FORMULATION (p.321)
WITH 25 £t°/sec. ADDED
FOR WIND EFFECT

PRITCHARD FORMULATION
{p.321} WITH VERTICAL
STRUCTURE DETERMINED BY
SALINITY PROFILES AND WINI
EFFECT INCLUDED WITH

WH = 3.ft: WT = 6 sec.

WL = 200 ft.

APPROXIMATE SUMER
AVERAGE VALUE

EXPERIMENTALLY DETERMINED

MODIFIED THACKSTON-
KRENKEL FORMULATION (p,31¢
TO OBTAIN .25 day~1,

TABLE 5-2 SUMMARY OF INPUT CONDITIONS FOR COMPUTER MODELING
OF D.O. - B.0.D. PROFILE FOR NARRAGANSETT BAY

-178-



MODEL DATA INPUT RANGE OR VALUE COMMENTS

WATER QUALITY SEEKONK DETERMINED FROM
BOUNDARY RIVER BOUNDARY EXISTING DATA
CONDITIONS B.0.D, = ,2077 (8,31,32,33)
FOR D’,0. AND (VSN) + 1,485 WHERE
B.0.D. D.0. = ,L1538 VSN - VERTICAL
(VSN) + 1,392 SECTION NUMBER
OCEAN BOUNDARY 2 —=15, BOTTOM
B,O,D, = 0.0 TO TOP, RESPECTIVELY
D.O. = SATURAT-
ION VALUE
(p.318)
B.0.D. GIVEY IN TABLE 5-1
LOADING WITH DISTRIBUTION
FROM POINT - OVER VERTICAL AS
SOURCES NOTED ON PAGE 467.
SALINITY 27.2-34.% DETERMINED FROM

EXISTING DATA
(8,32). SEE PAGE 470,

TABLE 5-2 (Cont'd) SUMMARY OF INPUT CONDITIONS FOR

COMPUTER MODELING OF D.O. - B.0.D. PROFILES
FOR NARRAGANSETT BAY
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estuary.section as defined in Fig. 5«1, The sampling
results for D.O, and B,0,D, for both top (5 £ft. below
water surface) and botteom (5 ft. abo%e_estuary bottom)
samples were then plotted against the longitudinal estuary
section number, Starting with a set of initial conditions
for both D.0., and B.0.D. taken from these data the com-
puter model was run with the conditions as presented in
Table 5-2, The model runs were continued until a quasi-
steady condition was reached as determined by no sig-
nificant changes in the depth-averaged D.o. and B,0,D,
profiles. This process required épp:oximately 30 days
simulation time, Figures 5-12 and 5-13 show a comparison
of the computed profiles Zfor both deptﬁ-averaged and top
and bottom stations compared to actual data for the D.O,
and B.0.D. values, respectively, Error bars used on both
figures show maximum levels found in tﬁe computer model
reéults, or minimums.

Figure 5-12 shows that both for the depth-averaged and
top sampling stations the comparison between estuafy D.o.
data and modeled results is good to excellen£ while the

bottom sampling station results agreement to model results
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is only-fair to good, B.0.D. profiles, as shown in

fig. 5~13 appear to be in good agreement in the upper

. estuary but display considerable variation between model
results and actual data in the lower portions of Narra-
gansett Bay.

The major contributors to the poor representation
between model and data are chiefly caused by the following
factors -~ lack of inclusion of any B.0.D. loading due
to the nitrogenous or benthic demands, less than adequate
representation of the actual stfucture for the vertical
dispersicn coefficient, need for a biological medel *o
predict sources of D.0. or B3.0.D. caused by interaction
between phvtoplankton and zooplankton populations, lack
of knowledge as to loading distribution over the vertical
sections and only fair estimates of the coefficients for
both reareation and B.0.D, decay. In light of all these
difficulties however, the computer model results appear o
be in good agreement with the Narragansett Bay data,

Another important model output is a time varying

plot of the D.0., B.0.D. and tidal height for any particular
"7 location in the estuary. Typical outputs from the model

appéar similar to the graph in Fig. S-I14, Qf particular
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significance is that the variatiog of D.O, and tidal
‘height are approximately in phase whiie the B.0.D, pro-
file is consistently out of phase, Physically this effect
can be quite simply explained. As water progresses up the
Bay (flood, tidal level on the rise) cleaner water (higher
D.O. levels) characteristic of each higher longitudinal
section number of the Bay is carried up toward Providence,
while the opposite process occurs during ebb tidal flow.
Thus we can see why the D.O, and tidal height are in phase,.
Using a similar argument about the B,0.D. levels becoming
higher as one proceeds from the Bay mouth to Providence,
the B.0.D. levels should increase as the tidal flow 2bbs.
There are however, cases where both the D.0. and B.O.D.
a?e in phase but 180° out of phase with the tidal height,.
This situation can occur when there is a dip in the

D.O, profile such as seen in Pig. 5~12 in the bottom
values predicted by the model. Also of concern is the
variation in D.0, and B.0.D. levels over a tidal cycle.
Typical changes between mean low water and mean high water

and over all depths range between 10% and 20% of the mean

tidal cycle averaged value. These variations appear to be
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conéiderably smaller than variations noted during the
Engineering Corp Survey (8) of 1959, but the differences
are more than likely at;ributable to inadequacies in in-
corporating short term and transit phenomena in the present
model development,

Probably the single most important feature of the
model is it ability to predict vertical structure for both
D.0. and B.0.D. The variations over depth in each of these
cases are determined by loading distributions for B.O.D.
and D,0, sources as well as the vertical dispersive struc-
ture. The variations caused by vertical velocity components
has been considered small and thus they have been neclacted
in the present modeling effort. To determine the loading
distribution for sources of B.0.D. it was assumed ﬁhat sew-
age discharge was buoyant when entering the estuaries en-—
éironmeﬂt therefore the loading for all cases was evenly
distributed over the top five non-dimensional grids except
when the loading in shallow water areas was large
( >10,000 1bs; B.C.D./ day). 1In these cases the load was

evenly distributed over the entire water column. TIn regards

to reareation, it was assumed that oxygen was to enter only
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at the estuarine surface. Defining accurate values for
the vertical dispersién formulation variable coefficients
was impossible due to lack of ény data of this kind for
Narragansett Bay. Hence, the standard Pritchard
constants were used and the results viewed accordingly.

A partial v;ew of the vertical structure has already
been noted in Fig. 5-12 and 5-13 which shc# that the
trends of higher B.0.D.'s and D.0.'s that cccur near the
surface have been qualitively predicted by the model.
Figures 5-15 through 5-20 show comparisons of actual D.O.
field data plotted against depth for several sections of
the Bay, The figure order shows a logical progression from
upper to lower Bay vertical D.O. struc%ure. The depths
listed on the figures often do not correspond to actual estgar
depthé at those stations, but are actually cross-sectional
averages and should be interpreted in that manner. Careful
observation 6f Fig. 5-1; through 5-20 shows a progressive case
of increased vertical mixing as one proceeds from the Prov-
idence Hurricane Barrier to Beavertail at the mouth of Nar;

ragansett Bay. This fact has been well confirmed by ob-

servation of salinity profiles in the area over many vears.
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FIG. 5-19
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The upper boundary condition ({Seekonk River - Red Bridge)
;rea (Fig. 5-15) does not display the severly inhibited
fveftical mixing structure‘due to the upper boundary con-
dition approximations and large land and river inflows in
the area. Comparison of the data which have been obtained
from references (8,31,32,33) and a current U.R.I. Bay Watch
sampling program show that the model results are remarkably
good when considering the vertical structﬁre of the dis-
persion coefficient has been taken from a standard Pritchard
formulation and B,0.D, - D.O. loading distributions have
been rather crudely approximated., The model results as shown
in the figures represant approximate mean tidal averages
and therefore are subject to a 10-20% deviation in either
difection due to the.influence of a tidal cyclic variation.
Profiles of the -vertical structure of B.0.D. have
not_ieen presented since all data sets available have taken
only top and bottom samples of B.O.D., and these results have
already been adequately presented in Pig., 5-13, They
however, would more than likely display a soméwhat similar
vertical structure, varying only where large B.0.D. loadings

were made in a given section,
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APPLICATION TO STORM-SEWAGE OVERFLOW

Once a model has been deveioped and verified to
predict actual estuary D.O, and B.0.D. levels with a
reasonable accuracy, the next step is to apply that model
to some specific application., To that end the steady
state model for Narragansett Bay was subjected to typical
‘sewerage overflow characteristics for a one day period
and then allowed to reach its quasi steady-state value once
again. The level of these overflows was taken as the raw

loadings as given in Table 5-1, while normal loads cor-

respond to river values,

Figures 5~21 and 5-22 display the ;alues of the D.O,
and B,0.D. depth-averaged profiles, respectively. From
the insert graph we can determine the approximate time of
overflow conditions and the subsequent return to normal
leoading situaéions. As expected, the levels of D,0, drop
due to the excess loads while the B,0.D. values rise
rather substantially especially in high load areas, and

both appear to reach their maximum or minimum levels respec-

tively at the end of 40 hrs. This trend is to be expected
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since when the excess loading ceases the process of

B.0.D. decay continues in its customary concentration
dependent manner to decay B.O.D..levels. Variations in
D.0. between initial levels and minimum value show values
of approximately 2% - 5% decrease of the initial, while
B.0.D. levels display deviations as large as 175% from the
initial value,

It is also noted that in the area of longitudinal
estuary section number 6 and 7 there appear large dif-
ferences in the B.0.D. levels, This effect for section
number 7 can be explained by an excessively large load in
that grid while the relatively low value in grid 6 is at-
tributable to a depression of that valug caused by the
finite-difference approximation adjustment for the large
point loading in 7 and insufficient local dispersion.

The next major point of interest is to determine
the approxima;e period of time required for the estuary
to recover from this excess load and return to its normal
quasi-steady values for both D.O. and B.O.D. With this
goal then the section-depth averaged profiles for D,O. and

B.0.D. were compared to the initial wvalues until agreement
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..between the two was achieved - both at the same-depth
averaged value for a given longitudinal section. Pre-
liminary results show that the time from which the excess
load was stopped to approximate steady state levels oc-
curred in about 2 1/2 days. This number‘appears reason-
able when compared to the 5-7 day estimate used by the
R.1. Department of Public Health to determine closing
times for the shell fish areas in the upper Bay after
periods of significant rainfall.
Plots of the vertical structure for the Bay were
not performed since they show similar trends as in the
normal sewage loading verification run. variations of
D.0. and B,0.D. levels show the exﬁected increases in B.O.D:
and decrease in D.O, where loading is high and vice versa,
The results of this application run with the com-
puter model are surprisingly good in giviné an order of
magnitude estimate of the "excessive load cleanup time",
considering the numerous gross approximations made in set-
ting up the model parameters. Further work in this area
however, is undoubtedly needed to provide more accurate

predictions,
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CHAPTER VI

SUMMATION

CONCLUSIONS

The development of the laterally-averaged mass-
transfer equation and its subsequent finite-difference
approximation have been shown to be valuable in provid-
ing a vertical water quality structure for a given es-
tuary or estuary river system within a reasonable com-
putational framework regarding both computer storage and
run time. Verification of mass conservation and D.0O. -
B.Q.D. reaction scheme have in addition indicated.that the
present model development has significant potential for
estuarine water quality prediction,

Simulation runs of the finite-difference computer
model involving the reaction ééheme for the B.0.D. - D.O.
system hav€ displayed the models ability to predict rather
excellent vertical structure definition for D.0Q. and re-

asonable values for B.0,D., in addition to which variations

over a tidal cycle show expected phase relationships between
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D.O. and B.0.D. Applications of the model to storm-
sewerage overflow situations has also’ shown an order of
magnitude estimate comparison with the scanty data avail-
able for "excessive load cleanup times", Hence, in con-
clusion, even considering the gross variations between
éstuary geometry and actual conditions wiéh subsequent
changes in tidal flow, crude approximations to the vertical
dispersion coefficient, lack of accounting for all B.0Q.D.
and D.O, sources and sinks caused by B.0.D. nitrification
and estuarine biology and gross approximétions as to the
coefficients of B,0.D. decay and rearéaticn, the model

. Predictions are surprisingly good,

RECOMMENDATIONS

Although the model results show good agreement to
the data during quasi steady state conditions there are -
**—considerable-problems yet to be tackled which would.even
make transit phenomena predictions a possibility. In the

following list, recommendations of a specific nature for

-
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the present Narragansett Bay model will be presented,

(1).

(2).

A new more realistic tidal hydraulics model
needs to be developed for the area of study
including more accurate representation of
actual estuarine geometry in the upper portion
of the Bay. Possible development of a two
dimensional laterally integrated tidal model

and good one dimensional model is indicated here.

An experimental pregram should be performed
to determine the vertical dispersion coe-
fficient structure for short term time vary-
ing cases for the Bay. These results can be
compared with Pritchard's work to determine

possible correlation between that formulation

..and actual data.

(3).

P e e e s

v?he‘Qistribution pf point loadings of B.O.D.

should be further studied to determine a more

reasonable approximation,
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(4).

(5).

(6).

(7).

The present model should be extended to
include not only carbonaceous B.0.D. loads

but also nitrogenous B.0.D. loading.

The B.0.D. decay coefficients, both carbon-

aceous and nitrogenous, and the reareation
coefficient should be determined from ex-
perimental data and compared with existing

formulations.

Modeling efforts should continue in the area
of the estuarine biologizal soﬁrces and

sinks of dissolved oxygen. Both distribution
and times of these loadings are of particular

inmportance,

Present model work has been terminated at a

-

'simple D.0. - B.0.D., reaction scheme. Obvious

generalizations to other water quality para-
meters, conservative substances and temperature

distributions are indicated.
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(8). Simulation runs of the conservative mode
model should be performed to determine
limits on the dispersion coefficients to
achieve a sclution which adequately conserves
mass for each different estuarine geometry

employed,

(9). Boundary condition approximation should be
corrected to include transit effects due to

tidal motion, wind, and land runoff,.

(10). Applications of the present model to storm
sewage overflow problems should be continued
with a more realistic estimate of the loading
levels as a function of time after a rainfall
and inclusion of direct land runoff loadings

into the Bay.

{11). 2In a more general view the present model
has shown the surface process of reareation to
be rather inadequately defined as regards to

the vertical structure modeling. Also extension
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of the present model to handle three
dimensiocnal time varying water guality
predictions driven by a two dimensional
vertically averaged tidal hydraulics model
appear§ to be within reach by using some of
the larger existing computer facilities

available,

ED{TEﬁSION TO _ESTUARINE WATTR POLLUTION MANAGIMENT

The present model development'has sroven, thrcugh
verification on Narragansett Bay D.O. - B.0.D. reaction
scheme, to be of significant use in predicting the vertical
strueture of these water quaiity parameters. It therefore
can be expected that with even better input data for the
sysﬁem constants that the mode;ﬁwill provide a reliable
predictive tool to note changes in estuary conditions under
different loadings of pollution. It has already been shown
in the application to storm sewage overflow conditions that

the results appear to be qualitatively and quantitatively

-205~



reasonable.

The extension of this werk from a simple verifi-
baﬁion process to an actﬁal preﬁictive model marks the
true value of any water quality model, Once this tran-
sition is achieved we then have a model that can aid
in the management of our coastal areas by allowing us
to quantitatively predict the change in water quality
caused by changes in sewage loading, channel dredging,

barrier construction, and methods of sewage treatment,
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NOMENCLATURE

A Espuary ecross sectional area

B Estuary width

c Dissolved oxygen (D.O.) concentration

co Coliform bacteria concentration

Co8 | Source or sink coliform bacteria

csmr Saturation value of dissolved oxygén

Cz chezy coefficient

D, partial Differential operater 3/ox

D, Partial Differential operator a)az

Qx' Laterél}y averaged longitudinal (%) dispersion
coefficient

Dz Laterél}y averﬁged vertical (z) dispersion
coefficient

E ‘Finite difference recursion value

e, Dispersion coefficient modification constant

e, x-directed diffusion coefficient

e, ' y-directed diffusion coefficient

e z-directed diffusion coefficient

F Generalized finite difference function

FP Position functicn ﬁ
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Generalized function operator

Gravitational acceleration

Amplification matrix

Mean sea level (MSL) depth of the estuary
Total estuary depth

Biochemical oxygen demand (B.0,.D.) peoint loads
Reareation coefficient |

B.0.D., decay cecefficient

Coliform decay coefficient

Reaction matrix

Biochemical oxygen demand (B.0.D.) concentraticn
Linear operator

Wavelength of mass concentration wave

Integer index number for temporal spacing
Characteristic length ¢f channel

Integer ;ndex number for leongitudinal spacing

Integer index number for vertical spacing

- Laterally integrated value of mass concentration eA

Laterzlly averaged mass concentration vector

Complex mass concentration amplitude

Numerical -solution of finite difference equation
for mass concentration P

Finite difference recursion value ’
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ur

yr+

Finite Difference recursion value

Ratio of computed to physical mass concentration

wave speeds

Richardson number

Hydraulic radius

Laterally integrated value of a source or sink SA
Source or sink vector

Conservative constituent

Source or sink of D.O.

Propagation factor

Lagarangian time scale

Time

Laterally intéqrated longitudinal velocity (u)

X or longitudinal velocity component

Uniform flow veloecity in the x direction
Perturbation of u velocity component

Local depth averaged velocity distribution
Friction or shear stress velocity

rms turbulent velocuty fluctuations -
y or lateral velocity component

Laterally integrated vertical velocity w
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wave height of water wave

Wave period of water wave
Wavelength of water wave

z or vertical velocity component
Pertubation of w velocity component

Longitudinal direction in orthogonal coordinate
system

ILateral direction in orthogonal coordinate system

Error between numerical and theoratical solutions
of the finite difference equation

Vertical direction in orthogonal coordinate system

Pinite difference weignhting £factor

Reaétion matrix weighting factor

Wind induced vertical dispersion emecirical constant
Stability constant for temporai term

Reaction matrix weighting factor

Density structure vertical dispersion empirical
constant

Stability constant for longitudinal term
Stability constant for vertical term
Temporal grid spacing

Longitudinal grid spacing
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&z

Vertical grid spacing
Lateral dispersion coefficient

Nondimensionalized vertical axis (z/HT}

Turbulent flow induced
Vertical dispersion empirical constant

Eigenvalue

Tidal height referenced to mean sea level (MSL)
Stability parameter

Density

Mass concentration of Substance a

Perturbation of PA

Wave number for comstituent j
Half temporal spacing ( At/2)
Bed shear stress

Characteristic dispersive mixing length

4

Wave number of constituent j

o
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